综合智慧能源 ›› 2026, Vol. 48 ›› Issue (1): 59-66.doi: 10.3969/j.issn.2097-0706.2026.01.006
薛东(
), 徐静静(
), 江婷(
), 王晓海(
), 徐聪(
)
收稿日期:2025-06-09
修回日期:2025-07-23
出版日期:2026-01-25
作者简介:薛东(1998),男,硕士,从事综合能源系统负荷预测方面的研究,xd18832003035@163.com;基金资助:
XUE Dong(
), XU Jingjing(
), JIANG Ting(
), WANG Xiaohai(
), XU Cong(
)
Received:2025-06-09
Revised:2025-07-23
Published:2026-01-25
Supported by:摘要:
针对园区综合能源系统供热负荷受多能流影响以及现有预测模型特征提取能力不足的问题,提出一种基于集成改进型自适应白噪声完备集成经验模态分解(ICEEMDAN)与多变量相空间重构的双重特征处理热负荷预测模型。运用ICEEMDAN法对热负荷时间序列进行分解,计算各分量的样本熵值并进行重构,再结合气温等输入特征组成不同频率下的多变量时间序列数据集;利用关联积分法确定序列的最佳延迟时间和嵌入维数,以此获得各数据集的高维相空间;利用参数优化后的双向长短时记忆神经网络模型对热负荷分量进行预测,并将预测结果叠加后得到最终的热负荷预测值。案例结果表明,与其他模型对比,所提方法取得了良好的预测效果。
中图分类号:
薛东, 徐静静, 江婷, 王晓海, 徐聪. 基于双重特征处理的园区综合能源系统供热负荷预测研究[J]. 综合智慧能源, 2026, 48(1): 59-66.
XUE Dong, XU Jingjing, JIANG Ting, WANG Xiaohai, XU Cong. Research on heat load prediction of integrated energy systems in parks based on dual feature processing[J]. Integrated Intelligent Energy, 2026, 48(1): 59-66.
表1
不同时间序列的Spearman秩相关系数
| 数据 | 电负荷 | 热负荷 | 气温 | 湿度 | 气压 | 地面风速 |
|---|---|---|---|---|---|---|
| 电负荷 | 1.000 | 0.677 | 0.217 | -0.261 | 0.073 | 0.167 |
| 热负荷 | 0.677 | 1.000 | -0.300 | -0.246 | 0.479 | 0.250 |
| 气温 | 0.217 | -0.300 | 1.000 | -0.194 | -0.639 | -0.057 |
| 湿度 | -0.261 | -0.246 | -0.194 | 1.000 | -0.281 | -0.433 |
| 气压 | 0.073 | 0.479 | -0.639 | -0.281 | 1.000 | 0.216 |
| 地面风速 | 0.167 | 0.250 | -0.057 | -0.433 | 0.216 | 1.000 |
| [1] |
张冬冬, 李芳凝, 刘天皓. 新型电力系统负荷预测关键技术及多元场景应用[J]. 综合智慧能源, 2025, 47(3): 47-61.
doi: 10.3969/j.issn.2097-0706.2025.03.005 |
|
ZHANG Dongdong, LI Fangning, LIU Tianhao. Key technologies for load forecasting in new power systems and their applications in diverse scenario[J]. Integrated Intelligent Energy, 2025, 47(3): 47-61.
doi: 10.3969/j.issn.2097-0706.2025.03.005 |
|
| [2] |
FANG T T, LAHDELMA R. Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system[J]. Applied Energy, 2016, 179: 544-552.
doi: 10.1016/j.apenergy.2016.06.133 |
| [3] | 张腾达, 李琦, 陈波. 基于LSTM的热力站短期热负荷预测研究[J]. 计算机仿真, 2022, 39(9): 507-512. |
| ZHANG Tengda, LI Qi, CHEN Bo. Research on short-term heat load forecasting of thermal power station based on LSTM[J]. Computer Simulation, 2022, 39(9): 507-512. | |
| [4] |
LU Y K, TIAN Z, ZHOU R Y, et al. A general transfer learningt-based framework for thermal load prediction in regional energy system[J]. Energy, 2021, 217: 119322.
doi: 10.1016/j.energy.2020.119322 |
| [5] | 王耀辉, 薛贵军, 赵广昊. 基于改进沙猫群算法优化CNN-BiLSTM的热负荷预测[J]. 现代电子技术, 2024, 47(14): 20-29. |
| WANG Yaohui, XUE Guijun, ZHAO Guanghao. Optimised CNN-BiLSTM for heat load prediction based on improved sand cat swarm algorithm[J]. Modern Electronics Technique, 2024, 47(14): 20-29. | |
| [6] | 周泽楷, 侯宏娟, 孙莉, 等. 基于CNN和BiLSTM神经网络模型的太阳能供暖负荷预测研究[J]. 太阳能学报, 2024, 45(10): 415-422. |
| ZHOU Zekai, HOU Hongjuan, SUN Li, et al. Research on solar heating load forecasting based on cnn and bilstm neural network model[J]. Acta Energiae Solaris Sinica, 2024, 45(10): 415-422. | |
| [7] | 孙庆凯, 王小君, 张义志, 等. 基于LSTM和多任务学习的综合能源系统多元负荷预测[J]. 电力系统自动化, 2021, 45(5): 63-70. |
| SUN Qingkai, WANG Xiaojun, ZHANG Yizhi, et al. Multiple load prediction of integrated energy system based on long short-term memory and multit-task learning[J]. Automation of Electric Power Systems, 2021, 45(5): 63-70. | |
| [8] | 吕忠麟, 顾洁, 孟璐. 基于耦合特征与多任务学习的综合能源系统短期负荷预测[J]. 电力系统自动化, 2022, 46(11): 58-66. |
| LYU Zhonglin, GU Jie, MENG Lu. Short-term load forecasting for integrated energy system based on coupling features and multi-task learning[J]. Automation of Electric Power Systems, 2022, 46(11): 58-66. | |
| [9] |
徐聪, 胡永锋, 张爱平, 等. 基于特征筛选的综合能源系统多元负荷日前-日内预测[J]. 综合智慧能源, 2024, 46(3): 45-53.
doi: 10.3969/j.issn.2097-0706.2024.03.006 |
|
XU Cong, HU Yongfeng, ZHANG Aiping, et al. Multit-load day-ahead and intrat-day forecasting for integrated energy systems based on feature screening[J]. Integrated Intelligent Energy, 2024, 46(3): 45-53.
doi: 10.3969/j.issn.2097-0706.2024.03.006 |
|
| [10] | 王雅然, 宋子旭, 由世俊, 等. 集成奇异谱分析与神经网络的热负荷预测算法[J]. 天津大学学报(自然科学与工程技术版), 2023, 56(6): 573-578. |
| WANG Yaran, SONG Zixu, YOU Shijun, et al. Thermal load prediction algorithm integrating singular spectrum analysis and neural network[J]. Journal of Tianjin University(Science and Technology), 2023, 56(6): 573-578. | |
| [11] | 赵征, 汪向硕. 基于CEEMD和改进时间序列模型的超短期风功率多步预测[J]. 太阳能学报, 2020, 41(7): 352-358. |
| ZHAO Zheng, WANG Xiangshuo. Ultra-short-term multit-step wind power prediction based on CEEMD and improved time series model[J]. Acta Energiae Solaris Sinica, 2020, 41(7): 352-358. | |
| [12] |
陆潍潍, 殷林飞. 基于CEEMD与GWO-LSTM的精细非侵入性负荷监测[J]. 综合智慧能源, 2023, 45(11): 36-44.
doi: 10.3969/j.issn.2097-0706.2023.11.005 |
|
LU Weiwei, YIN Linfei. Fine non-invasive load monitoring based on CEEMD and GWO-LSTM[J]. Integrated Intelligent Energy, 2023, 45(11): 36-44.
doi: 10.3969/j.issn.2097-0706.2023.11.005 |
|
| [13] | 唐竹, 肖宇航, 郭淳, 等. 基于CEEMDAN模态分解和TCN-BiGRU的短期电力负荷预测[J]. 智慧电力, 2024, 52(12):59-64,72. |
| TANG Zhu, XIAO Yuhang, GUO Chun, et al. Short-term electricity load forecasting based on CEEMDAN decomposition and TCN-BIGRU model[J]. Smart Power, 2024, 52(12): 59-64,72. | |
| [14] |
高明, 郝妍. 基于BiLSTM网络与误差修正的超短期负荷预测[J]. 综合智慧能源, 2023, 45(1): 31-40.
doi: 10.3969/j.issn.2097-0706.2023.01.004 |
|
GAO Ming, HAO Yan. Ultrat-short-term load forecasting based on BiLSTM network and error correction[J]. Integrated Intelligent Energy, 2023, 45(1): 31-40.
doi: 10.3969/j.issn.2097-0706.2023.01.004 |
|
| [15] |
HU R, HU W H, GÖKMEN N, et al. High resolution wind speed forecasting based on wavelet decomposed phase space reconstruction and self-organizing map[J]. Renewable Energy, 2019, 140: 17-31.
doi: 10.1016/j.renene.2019.03.041 |
| [16] | 高晟扬, 李法社. 基于CEEMD-SE-PSR-BP的短期风速预测[J]. 太阳能学报, 2025, 46(4): 415-422. |
| GAO Shengyang, LI Fashe. Short-term wind speed forecasting based on CEEMD-SE-PSR-BP method[J]. Acta Energiae Solaris Sinica, 2025, 46(4): 415-422. | |
| [17] | 田丽, 凤志民, 刘世林. 基于CEEMD-PSR-FOA-LSSVM的短期风电功率预测[J]. 可再生能源, 2016, 34(11): 1632-1638. |
| TIAN Li, FENG Zhimin, LIU Shilin. Short-term prediction of wind power based on CEEMD-PSR-FOA-LSSVM[J]. Renewable Energy Resources, 2016, 34(11):1632-1638. | |
| [18] | 窦真兰, 张春雁, 许一洲, 等. 基于多变量相空间重构和径向基函数神经网络的综合能源系统电冷热超短期负荷预测[J]. 电网技术, 2024, 48(1): 121-133. |
| DOU Zhenlan, ZHANG Chunyan, XU Yizhou, et al. Ultra-short-term load forecasting of electrical,cooling and heating for integrated energy system based on multivariate phase space reconstruction and radial basis function neural network[J]. Power System Technology, 2024, 48(1): 121-133. | |
| [19] |
商立群, 李洪波, 黄辰浩, 等. 基于多变量相空间重构和优化深度极限学习机的短期风电功率预测[J]. 南方电网技术, 2023, 17(2): 82-91.
doi: 10.13648/j.cnki.issn1674-0629.2023.02.010 |
|
SHANG Liqun, LI Hongbo, HUANG Chenhao, et al. Short-term wind power prediction based on multivariate phase space reconstruction and optimized deep extreme learning machine[J]. Southern Power System Technology, 2023, 17(2): 82-91.
doi: 10.13648/j.cnki.issn1674-0629.2023.02.010 |
|
| [20] | 薛东. 多能互补分布式能源系统的负荷预测与运行优化[D]. 北京: 华北电力大学, 2024. |
| XUE Dong. Load forecasting and operation optimization of multit-energy complementary distributed energy system[D]. Beijing: North China Electric Power University, 2024. | |
| [21] | 赵冬梅, 马泰屹, 王闯. 基于相空间重构和长短期记忆算法的电力系统无功负荷预测模型[J]. 现代电力, 2020, 37(5): 470-477. |
| ZHAO Dongmei, MA Taiyi, WANG Chuang. Reactive load forecasting model based on PSR-LSTM in power system[J]. Modern Electric Power, 2020, 37(5): 470-477. | |
| [22] |
ABUALIGAH L, DIABAT A, MIRJALILI S, et al. The arithmetic optimization algorithm[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 376: 113609.
doi: 10.1016/j.cma.2020.113609 |
| [23] | 鲁斌, 霍泽健, 俞敏. 基于LSTNet-Skip的综合能源系统多元负荷超短期预测[J]. 中国电机工程学报, 2023, 43(6): 2273-2283. |
| LU Bin, HUO Zejian, YU Min. Multi load ultra short-term forecasting of integrated energy system based on LSTNet-Skip[J]. Proceedings of the CSEE, 2023, 43(6):2273-2283. |
| [1] | 陈旭东, 卞礼杰, 马刚, 陈浩, 詹孝升, 彭乐瑶. 基于CEEMDAN-DBO-VMD-TCN-BiGRU的短期风电功率预测[J]. 综合智慧能源, 2026, 48(1): 13-22. |
| [2] | 梁富光, 马忠强. 基于评价因子重构与DECN-BiGRU的海岛微电网负荷预测[J]. 综合智慧能源, 2026, 48(1): 85-97. |
| [3] | 皇甫陈萌, 阮贺彬, 徐俊俊. 融合CEEMDAN-CNN-LSTM的风电机组多气象场景功率回归预测[J]. 综合智慧能源, 2025, 47(9): 38-50. |
| [4] | 李祯, 杨国华, 张元曦, 马鑫, 杨娜, 刘浩睿, 马龙腾. 基于模态二次分解和OOA-CNN-BiLSTM-Attention的光伏发电功率组合预测[J]. 综合智慧能源, 2025, 47(9): 28-37. |
| [5] | 程先龙, 张杰, 李思莹, 杨翼霞, 杨翠飞. 基于VMD-BP-BiLSTM的短期风电功率预测[J]. 综合智慧能源, 2025, 47(6): 20-29. |
| [6] | 殷林飞, 张依玲. 结合变分模态分解与三重卷积神经网络的光伏出力预测[J]. 综合智慧能源, 2025, 47(6): 11-19. |
| [7] | 张凯, 王金袖, 杨雪峰, 王强, 肖盛忠, 李鹏, 孙成武. 基于二次EMD分解的风电场混合储能系统配置优化[J]. 综合智慧能源, 2025, 47(10): 45-51. |
| [8] | 袁俊球, 王迪, 谢小锋, 张茜颖, 曹尚, 曹飞, 张经炜. 基于广义天气分类的ICEEMDAN-LSTM网络光伏发电功率短期预测[J]. 综合智慧能源, 2024, 46(9): 53-60. |
| [9] | 张勋祥, 吴杰康, 孙烨桦, 彭其坚. 平抑海上风电波动的混合储能系统容量优化配置[J]. 综合智慧能源, 2024, 46(6): 54-65. |
| [10] | 王俊, 田浩, 赵二岗, 舒展, 万子镜. 计及电动汽车共享储能特性的园区柔性资源低碳运行控制方法[J]. 综合智慧能源, 2024, 46(6): 16-26. |
| [11] | 江善和, 李伟, 徐小艳, 王德凯. 基于变分模态分解改进生成对抗网络的短期风电功率预测[J]. 综合智慧能源, 2024, 46(2): 28-35. |
| [12] | 杜董生, 连贺, 邓祥帅, 任一鸣, 赵哲敏. 基于MVMD和ISCSO-HKELM的质子交换膜燃料电池故障诊断[J]. 综合智慧能源, 2024, 46(12): 17-28. |
| [13] | 陆潍潍, 殷林飞. 基于CEEMD与GWO-LSTM的精细非侵入性负荷监测[J]. 综合智慧能源, 2023, 45(11): 36-44. |
| [14] | 李彬, 胡纯瑾, 王婧. 基于EEMD-BiLSTM的可调节负荷预测方法[J]. 综合智慧能源, 2022, 44(9): 33-39. |
| [15] | 钟鹏元, 杨晓宏, 寇建玉. 含储氢结构的园区综合能源系统优化配置研究[J]. 综合智慧能源, 2022, 44(9): 11-19. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||

