Huadian Technology ›› 2021, Vol. 43 ›› Issue (8): 74-82.doi: 10.3969/j.issn.1674-1951.2021.08.011
• AI Applications in Main Grid Operation • Previous Articles
MENG Anbo(), WANG Peng*(
), DING Weifeng, CHEN Shun, LIANG Ruduo, ZHANG Zheng
Received:
2021-05-22
Revised:
2021-06-28
Published:
2021-08-25
Contact:
WANG Peng
E-mail:menganbo@vip.sina.com;1299093526@qq.com
CLC Number:
MENG Anbo, WANG Peng, DING Weifeng, CHEN Shun, LIANG Ruduo, ZHANG Zheng. Optimal power flow calculation of power grid based on reinforcement learning and crisscross PSO algorithm particle swarm optimization[J]. Huadian Technology, 2021, 43(8): 74-82.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.1674-1951.2021.08.011
Tab.1
Comparison between the power generation costs made by improved PSO algorithm and that by other algorithms in case 1[17,18,19,20,21,22]
优化算法 | 最小值 | 平均值 | 最大值 |
---|---|---|---|
HMICA-SQP | 41 881.66 | — | — |
GA | 41 711.94 | 41 719.60 | 41 734.16 |
DE | 41 709.88 | 41 715.29 | 41 720.36 |
GSA | 41 695.87 | — | — |
MSA | 41 673.72 | — | — |
NISSO | 41 665.54 | — | — |
FAHSPSO-DE | 41 637.18 | — | — |
PSO | 41 670.62 | 41 745.37 | 41 837.77 |
CS-QPSO | 41 590.86 | 41 604.08 | 41 621.14 |
Tab.2
Optimal setting of control variables in case 1
控制变量 | CS-QPSO | 控制变量 | CS-QPSO |
---|---|---|---|
| 89.25 | | 0.99 |
| 44.03 | | 1.01 |
| 69.16 | | 0.92 |
| 460.70 | | 0.95 |
| 100.00 | | 0.95 |
| 357.93 | | 0.91 |
| 1.07 | | 0.90 |
| 1.07 | | 0.92 |
| 1.07 | | 0.90 |
| 1.08 | | 0.90 |
| 1.10 | | 1.10 |
| 1.08 | | 1.01 |
| 1.06 | | 0.94 |
| 1.00 | | 6.44 |
| 1.01 | | 11.99 |
| 1.10 | | 11.06 |
| 1.01 |
Tab.3
Comparison between the power generation costs made by improved PSO algorithm and that by other algorithms in case 2[18,19,20,21,22]
优化算法 | 最小值 | 平均值 | 最大值 |
---|---|---|---|
SSO | 132 080.41 | — | — |
PSO | 131 005.73 | — | — |
PSO | 130 062.86 | 130 142.48 | 130 234.34 |
GPU-PSO | 129 627.03 | — | — |
NISSO | 129 879.45 | — | — |
IABC | 129 862.00 | 129 895.00 | 129 941.00 |
MSA | 129 640.72 | — | — |
PSO | 130 344.33 | 131 417.60 | 133 016.09 |
CS-QPSO | 129 568.55 | 129 627.23 | 129 698.87 |
Tab.4
Optimal setting of control variables in case 2
控制 变量 | CS-QPSO | 控制 变量 | CS-QPSO | 控制 变量 | CS-QPSO |
---|---|---|---|---|---|
| 0.00 | | 38.33 | | 1.04 |
| 2.84 | | 0.47 | | 1.05 |
| 0.00 | | 7.10 | | 1.05 |
| 406.68 | | 29.08 | | 1.04 |
| 86.46 | | 8.03 | | 1.05 |
| 19.90 | | 35.18 | | 1.03 |
| 16.22 | | 35.22 | | 1.03 |
| 18.72 | | 0.00 | | 1.04 |
| 0.00 | | 0.00 | | 1.04 |
| 196.11 | | 1.03 | | 1.04 |
| 282.58 | | 1.05 | | 1.02 |
| 13.20 | | 1.04 | | 1.02 |
| 7.23 | | 1.10 | | 1.01 |
| 13.92 | | 1.10 | | 1.00 |
| 3.88 | | 1.04 | | 1.01 |
| 11.87 | | 1.03 | | 1.02 |
| 49.38 | | 1.04 | | 1.00 |
| 42.55 | | 1.03 | | 1.04 |
| 19.24 | | 1.05 | | 1.10 |
| 193.26 | | 1.08 | | 1.03 |
| 49.33 | | 1.10 | | 1.10 |
| 29.48 | | 1.05 | | 1.04 |
| 31.42 | | 1.03 | | 1.04 |
| 149.66 | | 1.04 | | 1.03 |
| 146.83 | | 1.04 | | 1.03 |
| 0.00 | | 1.04 | | 1.02 |
| 354.45 | | 1.03 | | 0.97 |
| 349.49 | | 1.04 | | 1.03 |
| 706.21 | | 1.05 | | 13.10 |
| 0.00 | | 1.06 | | 3.83 |
| 0.00 | | 1.04 | | 0.00 |
| 0.00 | | 1.03 | | 5.13 |
| 19.42 | | 1.03 | | 19.14 |
| 22.67 | | 1.06 | | 21.77 |
| 0.00 | | 1.06 | | 12.68 |
| 432.87 | | 1.06 | | 24.17 |
| 0.00 | | 1.10 | | 30.00 |
| 3.59 | | 1.08 | | 16.11 |
| 503.14 | | 1.08 | | 16.30 |
| 0.00 | | 1.05 | | 11.02 |
| 0.00 | | 1.04 | | 30.00 |
| 0.00 | | 1.04 | | 17.35 |
| 0.00 | | 1.04 | ||
| 230.86 | | 1.03 |
[1] | 李春晓, 何仁君. 基于内点法的最优潮流计算及算例分析[J]. 电气开关, 2018, 56(1):32-36. |
LI Chunxiao, HE Renjun. The calculation of optimal power flow based on interior-point method[J]. Electric Switchgear, 2018, 56(1):32-36. | |
[2] | 张江红, 孟宪朋, 刘怀东, 等. 最优潮流算法综述[J]. 华北电力技术, 2010(7):23-26,45. |
ZHANG Jianghong, MENG Xianpeng, LIU Huaidong, et al. A summary of algorithms for optimal power flow[J]. North China Electric Power, 2010(7):23-26,45. | |
[3] | 李彩华, 郭志忠. 最优潮流的发展[J]. 继电器, 2002(1):1-6,56. |
LI Caihua, GUO Zhizhong. The development of optimal power flow[J]. Relay, 2002(1):1-6,56. | |
[4] | 陈丽光, 文波, 聂一雄. 基于退火粒子群和内点法的改进最优潮流算法[J]. 广东电力, 2013, 26(9):32-35,103. |
CHEN Liguang, WEN Bo, NIE Yixiong. Improved optimal power flow algorithm based on annealing particle swarm and interior point method[J]. Guangdong Electric Power, 2013, 26(9):32-35,103. | |
[5] | 刘敏. 基于改进遗传算法的最优潮流问题的研究[D]. 长沙:中南大学, 2010. |
[6] | 肖儿良, 林蔚, 毛海军, 等. 基于权值的引力搜索算法在电力系统最优潮流计算中的应用[J]. 电工电能新技术, 2014, 33(7):62-66. |
XIAO Erliang, LIN Wei, MAO Haijun, et al. Calculation of optimal power flow problem using search algorithm based on weight of gravitation[J]. Advanced Technology of Electrical Engineering and Energy, 2014, 33(7):62-66. | |
[7] | 陈维荣, 张倩, 王劲草, 等. 搜寻者优化算法在最优潮流中的应用[J]. 电力系统及其自动化学报, 2009, 21(1):64-67. |
CHEN Weirong, ZHANG Qian, WANG Jincao, et al. Application of seeker optimization algorithm in optimal power flow[J]. Proceedings of the CSU-EPSA, 2009, 21(1):64-67. | |
[8] |
NGUYEN T T. A high performance social spider optimization algorithm for optimal power flow solution with single objective optimization[J]. Energy, 2019, 171:218-240.
doi: 10.1016/j.energy.2019.01.021 |
[9] | 赵鑫, 郑文禹, 侯智华, 等. 基于粒子群优化算法的多能互补系统经济调度研究[J]. 华电技术, 2021, 43(4):14-20. |
ZHAO Xin, ZHENG Wenyu, HOU Zhihua, et al. Research on economic dispatch of multi-energy complementary system based on Particle Swarm Optimization[J]. Huadian Technology, 2021, 43(4):14-20. | |
[10] | 陆立民, 褚国伟, 张涛, 等. 基于改进多目标粒子群算法的微电网储能优化配置[J]. 电力系统保护与控制, 2020, 48(15):116-124. |
LU Limin, CHU Guowei, ZHANG Tao, et al. Optimal configuration of energy storage in a microgrid based on improved multi-objective particle swarm optimization[J]. Power System Protection and Control, 2020, 48(15):116-124. | |
[11] | 李彬, 郝一浩, 祁兵, 等. 边缘计算在需求响应中的应用现状及发展思路[J]. 华电技术, 2021, 43(3):1-8. |
LI Bin, HAO Yihao, QI Bing, et al. Application and development of edge computing in demand response[J]. Huadian Technology, 2021, 43(3):1-8. | |
[12] | 吴攀. 光伏发电系统发电功率预测[J]. 发电技术, 2020, 41(3):231-236. |
WU Pan. Power forecasting of photovoltaic power generation system[J]. Power Generation Technology, 2020, 41(3):231-236. | |
[13] | 高明明, 杨磊, 于浩洋, 等. 量子计算在火电机组优化控制中的应用综述[J]. 华电技术, 2020, 42(8):90-96. |
GAO Mingming, YANG Lei, YU Haoyang, et al. Review on the application of quantum computing in optimization control on thermal power units[J]. Huadian Technology, 2020, 42(8):90-96. | |
[14] | 谈智玲, 陈才明, 徐胜朝, 等. 基于振动信号分析的滚动轴承寿命预测方法研究[J]. 华电技术, 2021, 43(5):36-44. |
TAN Zhiling, CHEN Caiming, XU Shengchao, et al. Research on service life prediction on rolling bearings based on vibration signal analysis[J]. Huadian Technology, 2021, 43(5):36-44. | |
[15] | 李鑫滨, 朱庆军, 马红霞, 等. 粒子群算法及其在电力系统无功优化中的应用综述[J]. 燕山大学学报, 2008(3):245-250. |
LI Xinbin, ZHU Qingjun, MA Hongxia, et al. Overview of particle swarm optimization algorithm on reactive optimization for power system[J]. Journal of Yanshan University, 2008(3):245-250. | |
[16] | MENG A B, CHEN Y C, YIN H, et al. Crisscross optimization algorithm and its application[J]. Knowledge-Based, 2014, 67:218-229. |
[17] | 胡细兵. 基于强化学习算法的最优潮流研究[D]. 广州:华南理工大学, 2011. |
[18] |
NARIMANI M R, AZIZIPANAH-ABARGHOOEE R, ZOGHDAR-MOGHADAM-SHAHREKOHNE B, et al. A novel approach to multi-objective optimal power flow by a new hybrid optimization algorithm considering generator constraints and multi-fuel type[J]. Energy, 2013, 49:119-136.
doi: 10.1016/j.energy.2012.09.031 |
[19] |
NADERI E, NARIMANI H, FATHI M, et al. Narimani a novel fuzzy adaptive configuration of particle swarm optimization to solve large-scale optimal reactive power dispatch[J]. Applied Soft Computing, 2017, 53:441-456.
doi: 10.1016/j.asoc.2017.01.012 |
[20] |
NADERI E, POURAKBARI-KASMAEI M, CERNA F V, et al. A novel hybrid self-adaptive heuristic algorithm to handle single-and multi-objective optimal power flow problems[J]. International Journal of Electrical Power & Energy Systems, 2021, 125.DOI: 10.1016/j.ijepes.2020.106492.
doi: 10.1016/j.ijepes.2020.106492 |
[21] |
SHILAJA C, ARUNPRASATH T. Optimal power flow using moth swarm algorithm[J]. Future Generation Computer Systems, 2019, 98:708-715.
doi: 10.1016/j.future.2018.12.046 |
[22] |
DUMAN S, GÜVENÇ U, SÖNMEZ Y, et al. Optimal power flow using gravitational search algorithm[J]. Energy Conversion and Management, 2012, 59:86-95.
doi: 10.1016/j.enconman.2012.02.024 |
[23] |
GHASEMI M, GHAVIDEL S, GHANBARIAN M M, et al. Application of imperialist competitive algorithm with its modified techniques for multi-objective optimal power flow problem:A comparative study[J]. Information Sciences, 2014, 281:225-247.
doi: 10.1016/j.ins.2014.05.040 |
[24] |
HMIDA J B, CHAMBERS T, LEE J. Solving constrained optimal power flow with renewables using hybrid modified imperialist competitive algorithm and sequential quadratic programming[J]. Electric Power Systems Research, 2019, 177.DOI: 10.1016/j.epsr.2019.105989.
doi: 10.1016/j.epsr.2019.105989 |
[25] |
SINGH R P, MUKHERJEE V, GHOSHAL S P. Particle swarm optimization with an aging leader and challengers algorithm for the solution of optimal power flow problem[J]. Applied Soft Computing, 2016, 40:161-177.
doi: 10.1016/j.asoc.2015.11.027 |
[26] |
ROBERGE V, TARBOUCHI M, OKOU F. Optimal power flow based on parallel metaheuristics for graphics processing units[J]. Electric Power Systems Research 2016, 140:344-353.
doi: 10.1016/j.epsr.2016.06.006 |
[27] |
BAI W, EKE I, LEE K Y. An improved artificial bee colony optimization algorithm based on orthogonal learning for optimal power flow problem[J]. Control Engineering Practice, 2017, 61:163-172.
doi: 10.1016/j.conengprac.2017.02.010 |
[1] | LU Wentian. Increment-exchange-based decentralized multi-objective optimal power flow algorithm for active distribution grids [J]. Integrated Intelligent Energy, 2024, 46(2): 43-48. |
[2] | YIN Linfei, LIU Jinyuan. Smart home energy management based on artificial emotion LSTM algorithm [J]. Integrated Intelligent Energy, 2023, 45(11): 27-35. |
[3] | HU Zuyuan, JIN Xianlin, TAN Yazhi, FAN Jingyi. Optimized configuration of distributed photovoltaic and energy storage system based on improved particle swarm algorithm [J]. Integrated Intelligent Energy, 2023, 45(1): 49-57. |
[4] | Xinye DU, Jianxi WANG, Yonghui SUN, Yi HE, Pengpeng WU, Wei ZHOU. Optimal planning of hybrid energy storage systems in microgrids considering seawater desalination and hydrogen production [J]. Integrated Intelligent Energy, 2022, 44(5): 49-55. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||