Integrated Intelligent Energy ›› 2022, Vol. 44 ›› Issue (10): 25-32.doi: 10.3969/j.issn.2097-0706.2022.10.004
• Optimal Operation and Control • Previous Articles Next Articles
QU Taotao1(), QI Xiao1,*(
), JIANG Wenke1(
), DU Ming2(
), PAN Yan3(
)
Received:
2022-05-05
Revised:
2022-07-26
Published:
2022-10-25
Contact:
QI Xiao
E-mail:qutaotao@stu2020.jnu.edu.cn;qixiao.jnu@gmail.com;chiang@stu2021.jnu.edu.cn;zjajdming@163.com;panyan_cinf@163.com
CLC Number:
QU Taotao, QI Xiao, JIANG Wenke, DU Ming, PAN Yan. Frequency distributed model predictive control strategy for the new power system considering virtual inertia of wind turbines[J]. Integrated Intelligent Energy, 2022, 44(10): 25-32.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2022.10.004
[1] | 国家能源局. 国家能源局发布2021年全国电力工业统计数据[R/OL].(2022-01-26)[2022-05-01]. . |
[2] | 张旭, 陈云龙, 岳帅, 等. 风电参与电力系统调频技术研究的回顾与展望[J]. 电网技术, 2018, 42(6):1793-1803. |
ZHANG Xu, CHEN Yunlong, YUE Shuai, et al. Retrospect and prospect of research on frequency regulation technology of power system by wind power[J]. Power System Technology, 2018, 42(6):1793-1803. | |
[3] |
王康平, 张兴科, 刘财华, 等. 基于自适应下垂控制的风电场无功电压控制策略[J]. 综合智慧能源, 2022, 44(4): 12-19.
doi: 10.3969/j.issn.2097-0706.2022.04.002 |
WANG Kangping, ZHANG Xingke, LIU Caihua, et al. Reactive power and voltage control strategy based on adaptive droop control for wind power plants[J]. Integrated Intelligent Energy, 2022, 44(4): 12-19.
doi: 10.3969/j.issn.2097-0706.2022.04.002 |
|
[4] | 文云峰, 杨伟峰, 林晓煌. 低惯量电力系统频率稳定分析与控制研究综述及展望[J]. 电力自动化设备, 2020, 40(9): 211-222. |
WEN Yunfeng, YANG Weifeng, LIN Xiaohuang. Review and prospect of frequency stability analysis and control of low-inertia power systems[J]. Electric Power Automation Equipment, 2020, 40(9):211-222. | |
[5] | 王同森, 张峰, 丁磊. 考虑最优运行点的超速风电机组调频控制策略[J]. 电力自动化设备, 2021, 41(6): 22-28. |
WANG Tongsen, ZHANG Feng, DING Lei. Frequency regulation control strategy of over-speed wind turbines considering optimal operation point[J]. Electric Power Automation Equipment, 2021, 41(6):22-28. | |
[6] | 胥国毅, 胡家欣, 郭树锋, 等. 超速风电机组的改进频率控制方法[J]. 电力系统自动化, 2018, 42(8):39-44. |
XU Guoyi, HU Jiaxin, GUO Shufeng, et al. Improved frequency control strategy for over-speed wind turbines[J]. Automation of Electric Power Systems, 2018, 42(8):39-44. | |
[7] | 李生虎, 朱国伟. 基于特征结构分析的风电机组调频控制桨距角参数选择[J]. 太阳能学报, 2017, 38(3):662-668. |
LI Shenghu, ZHU Guowei. Pitch angle adjustment to wind turbine generators for frequency regulation based on eigenvalue analysis[J]. Acta Energiae Solaris Sinica, 2017, 38(3):662-668. | |
[8] | 郑黎明, 林宇, 陈严, 等. 大型风力机恒功率桨距非线性PID控制方法研究[J]. 太阳能学报, 2012, 33(5):727-731. |
ZHENG Liming, LIN Yu, CHEN Yan, et al. Research on blade pitch nonlinear PID control for a large-scale wind turbine under constant power[J]. Acta Energiae Solaris Sinica, 2012, 33(5):727-731. | |
[9] | 张骏, 苏阳, 李勇, 等. 大型风力机叶片涡流发生器流动控制的数值研究[J]. 华电技术, 2021, 43(12): 66-71. |
ZHANG Jun, SU Yang, LI Yong, CONG Xingliang. Numerical study on the flow control of vortex generators on large wind turbine blades[J]. Huadian Technology, 2021, 43(12): 66-71. | |
[10] | 邢鹏翔, 侍乔明, 王刚, 等. 风电机组虚拟惯量控制的响应特性及机理分析[J]. 高电压技术, 2018, 44(4):1302-1310. |
XING Pengxiang, SHI Qiaoming, WANG Gang, et al. Response characteristics and mechanism analysis about virtual inertia control of wind generators[J]. High Voltage Engineering, 2018, 44(4):1302-1310. | |
[11] | 侍乔明, 王刚, 李海英, 等. 考虑调频能力的风电场虚拟惯量多机协同控制策略[J]. 电网技术, 2019, 43(11):4005-4017. |
SHI Qiaoming, WANG Gang, LI Haiying, et al. Coordinated virtual inertia control strategy of multiple wind turbines in wind farms considering frequency regulation capability[J]. Power System Technology, 2019, 43(11):4005-4017. | |
[12] |
ULLAH N R, THIRINGER T, KARLSSON D. Temporary primary frequency control support by variable speed wind turbines—Potential and applications[J]. IEEE Transactions on Power Systems, 2008, 23(2):601-612.
doi: 10.1109/TPWRS.2008.920076 |
[13] | 任凯. 基于自抗扰控制的含风电互联电网的负荷频率控制[D]. 西安: 西安理工大学, 2018. |
[14] | 韩云昊, 马超, 朱银珠, 等. 考虑风能渗透的电力系统的负荷频率控制研究[J]. 控制工程, 2018, 25(11):2046-2051. |
HAN Yunhao, MA Chao, ZHU Yinzhu, et al. Load frequency control for power systems with wind energy[J]. Control Engineering of China, 2018, 25(11):2046-2051. | |
[15] | 邵泰衡. 区域互联电网频率控制策略研究[D]. 淄博: 山东理工大学, 2020. |
[16] |
LIU J, YAO Q, HU Y. Model predictive control for load frequency of hybrid power system with wind power and thermal power[J]. Energy, 2019, 172:555-565.
doi: 10.1016/j.energy.2019.01.071 |
[17] | ALI A, KHAN B, MEHMOOD C A, et al. Decentralized MPC based frequency control for smart grid[C]//2017 International Conference on Energy Conservation and Efficiency (ICECE), 2017. |
[18] |
ZHANG C, WANG S, ZHAO Q. Distributed economic MPC for LFC of multi-area power system with wind power plants in power market environment[J]. International Journal of Electrical Power & Energy Systems, 2021, 126(4):106548.
doi: 10.1016/j.ijepes.2020.106548 |
[19] |
MA M, CHEN H, LIU X, et al. Distributed model predictive load frequency control of multi-area interconnected power system[J]. International Journal of Electrical Power & Energy Systems, 2014, 62:289-298.
doi: 10.1016/j.ijepes.2014.04.050 |
[20] | YAN Y, ZHANG Y, LIU X. Distributed MPC strategy with application to AGC in the presence of variable speed wind turbine[C]// 34th Chinese Control Conference (CCC), 2015:4151-4155. |
[21] |
LEE J, MULJADI E, SRENSEN P, et al. Releasable kinetic energy-based inertial control of a DFIG wind power plant[J]. IEEE Transactions on Sustainable Energy, 2016, 7(1):279-288.
doi: 10.1109/TSTE.2015.2493165 |
[22] |
YAN W, CHENG L, YAN S, et al. Enabling and evaluation of inertial control for PMSG-WTG using synchronverter with multiple virtual rotating masses in microgrid[J]. IEEE Transactions on Sustainable Energy, 2020, 11(2):1078-1088.
doi: 10.1109/TSTE.2019.2918744 |
[23] | SANG S, ZHANG C, CAI X, et al. Control of a type-IV wind turbine with the capability of robust grid-synchronization and inertial response for weak grid stable operation[J]. IEEE Access, 2019(7):58553-58569. |
[24] | 姚琦, 刘吉臻, 胡阳, 等. 含异步变速风机的风电场一次调频等值建模与仿真[J]. 电力系统自动化, 2019, 43(23):185-192. |
YAO Qi, LIU Jizhen, HU Yang, et al. Equivalent modeling and simulation for primary frequency regulation of wind farm with asynchronous variable speed wind turbines[J]. Automation of Electric Power Systems, 2019, 43(23):185-192. | |
[25] |
VRDOLJAK K, PERI N, PETROVI I. Sliding mode based load-frequency control in power systems[J]. Electric Power Systems Research, 2010, 80(5):514-527.
doi: 10.1016/j.epsr.2009.10.026 |
[26] |
SOCKEEL N, GAFFORD J, PAPARI B, et al. Virtual inertia emulator-based model predictive control for grid frequency regulation considering high penetration of inverter-based energy storage system[J]. IEEE Transactions on Sustainable Energy, 2020(99).DOI:10.1109/TSTE.2020.2982348.
doi: 10.1109/TSTE.2020.2982348 |
[1] | LI Feifei, WANG Shuhong, CUI Jindong. Study on influencing factors of automobile carbon emissions from the perspective of whole life cycle: A case study of Jilin Province [J]. Integrated Intelligent Energy, 2024, 46(8): 20-27. |
[2] | WANG Zening, LI Wenzhong, LI Donghui, XU Taishan, YU Jun. Construction of the hierarchical autonomous power balance model for software-defined new power systems [J]. Integrated Intelligent Energy, 2024, 46(7): 1-11. |
[3] | YIN Linfei, MENG Yujie. Short-term wind power forecasting based on DenseNet convolutional neural networks [J]. Integrated Intelligent Energy, 2024, 46(7): 12-20. |
[4] | HE Fangbo, PEI Ligeng, ZHENG Rui, FAN Kangjian, ZHANG Xiaoman, LI Gengfeng. Construction of new power system in Shaanxi Province with the collaboration of source-network-load-storage [J]. Integrated Intelligent Energy, 2024, 46(7): 40-46. |
[5] | WANG Jun, TIAN Hao, ZHAO Ergang, SHU Zhan, WAN Zijing. Low-carbon operation control on park-level integrated energy systems considering shared energy storage devices for electric vehicles [J]. Integrated Intelligent Energy, 2024, 46(6): 16-26. |
[6] | ZHANG Xunxiang, WU Jiekang, SUN Yehua, PENG Qijian. Capacity allocation optimization of hybrid energy storage systems considering fluctuation control on offshore wind power [J]. Integrated Intelligent Energy, 2024, 46(6): 54-65. |
[7] | YU Haibin, LU Wenzhou, TANG Liang, ZHANG Yuchen, ZOU Xiangyu, JIANG Yuliang, LIU Jiabao. Economic dispatch and profit distribution strategy for multi-agent virtual power plants considering risk preferences [J]. Integrated Intelligent Energy, 2024, 46(6): 66-77. |
[8] | WANG Liang, DENG Song. Anomalous data detection methods for new power systems [J]. Integrated Intelligent Energy, 2024, 46(5): 12-19. |
[9] | WANG Yongli, WANG Yanan, MA Ziben, QIN Yumeng, CHEN Xichang, TENG Yue. Effectiveness evaluation on energy trading systems taking blockchain technology [J]. Integrated Intelligent Energy, 2024, 46(4): 78-84. |
[10] | DING Leyan, KE Song, YANG Jun, SHI Xingye. Control strategy of virtual synchronous generators based on adaptive control parameter setting [J]. Integrated Intelligent Energy, 2024, 46(3): 35-44. |
[11] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[12] | LI Chengyun, YANG Dongsheng, ZHOU Bowen, YANG Bo, LI Guangdi. Digitization of new-type electric power systems based on digital twin technology [J]. Integrated Intelligent Energy, 2024, 46(2): 1-11. |
[13] | ZHANG Xinyi, YANG Bo. Stability analysis on islanded microgrids with grid-forming and grid-following converters [J]. Integrated Intelligent Energy, 2024, 46(2): 12-18. |
[14] | JIANG Shanhe, LI Wei, XU Xiaoyan, WANG Dekai. Short-term wind power forecasting based on variational mode decomposition and generative adversarial networks [J]. Integrated Intelligent Energy, 2024, 46(2): 28-35. |
[15] | SUN Na, DONG Haiying, CHEN Wei, MA Hulin. Secondary frequency modulation control strategy for large-scale grid-side energy storage devices in new power systems [J]. Integrated Intelligent Energy, 2024, 46(2): 59-67. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||