Integrated Intelligent Energy ›› 2023, Vol. 45 ›› Issue (4): 26-34.doi: 10.3969/j.issn.2097-0706.2023.04.004
• Engineering and Application • Previous Articles Next Articles
ZHAO Dongpeng(), ZHAO Li(
), DENG Shuai(
), ZHAO Ruikai(
), XU Weicong(
)
Received:
2022-07-15
Revised:
2022-08-17
Accepted:
2023-03-12
Published:
2023-04-25
Contact:
ZHAO Li
E-mail:zdp1994@tju.edu.cn;jons@tju.edu.cn;sdeng@tju.edu.cn;ruikaizhao@tju.edu.cn;xuweicong@tju.edu.cn
Supported by:
CLC Number:
ZHAO Dongpeng, ZHAO Li, DENG Shuai, ZHAO Ruikai, XU Weicong. Effects of mixed working fluids on the performance of a combined power and ejector refrigeration cycle[J]. Integrated Intelligent Energy, 2023, 45(4): 26-34.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2023.04.004
Table 1
Control equation for each component
部件名称 | 能量守恒方程及其他控制方程 |
---|---|
工质泵 | 式中: |
内部换热器 | 式中:Qihe为内部换热器的换热功率; |
加热器 | 式中:Qin为循环在加热器中的吸热功率; |
闪蒸分离器 | 式中: |
膨胀机 | 式中:ηtur为膨胀机的等熵效率;h6,s为等熵条件下膨胀机出口处工质的比焓 |
节流阀 | |
蒸发器 | 式中: |
喷射器 | |
混合器 | |
冷凝器 | 式中:Qout为循环在冷凝器中的放热功率; |
[1] |
HUANG B J, PETRENKO V A, SAMOFATOV I Y, et al. Collector selection for solar ejector cooling system[J]. Solar Energy, 2001, 71(4):269-274.
doi: 10.1016/S0038-092X(01)00042-1 |
[2] |
ALLOUCHEl Y, VARGA S, BOUDEN C, et al. Dynamic simulation of an integrated solar-driven ejector based air conditioning system with PCM cold storage[J]. Applied Energy, 2017, 190:600-611.
doi: 10.1016/j.apenergy.2017.01.001 |
[3] |
LIU Y, FU H, YU J. Performance study of an enhanced ejector refrigeration cycle with flash tank economizer for low-grade heat utilization[J]. Applied Thermal Engineering, 2018, 140:43-50.
doi: 10.1016/j.applthermaleng.2018.05.038 |
[4] |
BRAIMAKIS K. Solar ejector cooling systems: A review[J]. Renewable Energy, 2021, 164:566-602.
doi: 10.1016/j.renene.2020.09.079 |
[5] |
DAI Y, WANG J, LIN G. Exergy analysis,parametric analysis and optimization for a novel combined power and ejector refrigeration cycle[J]. Applied Thermal Engineering, 2009, 29(10):1983-1990.
doi: 10.1016/j.applthermaleng.2008.09.016 |
[6] |
YANG X, ZHAO L, LI H, et al. Theoretical analysis of a combined power and ejector refrigeration cycle using zeotropic mixture[J]. Applied Energy, 2015, 160:912-919.
doi: 10.1016/j.apenergy.2015.05.001 |
[7] |
XIA J, GUO Y, LI Y, et al. Thermodynamic analysis and comparison study of two novel combined cooling and power systems with separators using CO2-based mixture for low grade heat source recovery[J]. Energy Conversion and Management, 2020, 215:112918.
doi: 10.1016/j.enconman.2020.112918 |
[8] |
HO T, MAO S, GREIF R. Comparison of the Organic Flash Cycle(OFC) to other advanced vapor cycles for intermediate and high temperature waste heat reclamation and solar thermal energy[J]. Energy, 2012, 42(1):213-223.
doi: 10.1016/j.energy.2012.03.067 |
[9] |
MONDAL S, DE S. Ejector-Based Organic Flash Combined Power and Refrigeration Cycle(EBOFCP&RC)—A scheme for low grade waste heat recovery[J]. Energy, 2017, 134:638-648.
doi: 10.1016/j.energy.2017.06.071 |
[10] |
HUANG G D, ZHANG S Y, GE Z, et al. Thermodynamic analysis of organic flash cycle by R600a/R601a mixtures[J]. Fuel Cells, 2021, 21(1): 77-88.
doi: 10.1002/fuce.v21.1 |
[11] |
HUANG G, ZHANG S, GE Z, et al. Thermal performance analysis of organic flash cycle using R600A/R601A mixtures with internal heat exchanger[J]. Thermal Science, 2021, 25(1B):767-779.
doi: 10.2298/TSCI200507296H |
[12] |
YAN Y, GE Z, XU J, et al. Thermodynamic analysis of double flash organic flash cycle using R600a/R601a mixtures[J]. Sustainable Energy Technologies and Assessments, 2022, 50: 101727.
doi: 10.1016/j.seta.2021.101727 |
[13] | 许伟聪, 赵力, 邓帅, 等. 基于非共沸工质的热力循环三维构建方法初探[J]. 科学通报, 2019, 64(2):206-214. |
XU Weicong, ZHAO Li, DENG Shuai, et al. A preliminary approach to the 3D construction of thermodynamic cycle based on zeotropic working fluids[J]. Chinese Science Bulletin, 2019, 64(2):206-214. | |
[14] |
XU W, ZHAO R, ZHAO L, et al. Understanding the 3D construction method of thermodynamic cycle:Insights from limiting performance of pure working fluid[J]. Energy Conversion and Management, 2020, 224:113364.
doi: 10.1016/j.enconman.2020.113364 |
[15] |
MENG D, LIU Q, JI Z. Effects of two-phase expander on the thermoeconomics of organic double-flash cycles for geothermal power generation[J]. Energy, 2022, 239:122346.
doi: 10.1016/j.energy.2021.122346 |
[16] |
TANG Z, WU C, LIU C, et al. Thermodynamic analysis and comparison of a novel dual-ejector based organic flash combined power and refrigeration cycle driven by the low-grade heat source[J]. Energy Conversion and Management, 2021, 239:114205.
doi: 10.1016/j.enconman.2021.114205 |
[17] |
PARIKHANI T, GHAEBI H, ROSTAMZADEH H. A novel geothermal combined cooling and power cycle based on the absorption power cycle:Energy,exergy and exergoeconomic analysis[J]. Energy, 2018, 153: 265-277.
doi: 10.1016/j.energy.2018.01.153 |
[18] | 杨兴洋. 基于非共沸混合工质的新型冷电联合循环及组份分离特性研究[D]. 天津: 天津大学, 2016. |
YANG Xingyang. Research on a novel combined power and refrigeration cycle and the separation performance of zeotropic mixture[D]. Tianjin: Tianjin University, 2016. | |
[19] |
KEENAN H, NEUMANN P, LUSTWERK F. An investigation of ejector design by analysis and experiment[J]. ASME Journal of Applied Mechanics, 1950, 72:299-309.
doi: 10.1115/1.1831297 |
[20] | 董凌彰, 李文鑫, 郭放, 等. 无人机遥感测量围护结构传热性能及室内温度的应用研究[J]. 区域供热, 2020 (6):37-45,71. |
DONG Lingzhang, LI Wenxin, GUO Fang, et al. Application of UAVs remote sensing measurement in heat transfer performance of enclosure structure and indoor temperature[J]. District Heating, 2020(6):37-45,71. | |
[21] |
FICAPAL A, MUTIS I. Framework for the detection, diagnosis, and evaluation of thermal bridges using infrared thermography and unmanned aerial vehicles[J]. Buildings, 2019, 9(8): 179.
doi: 10.3390/buildings9080179 |
[22] |
ZHENG H, ZHONG X, YAN J, et al. A thermal performance detection method for building envelope based on 3D model generated by UAV thermal imagery[J]. Energies, 2020, 13(24): 6677.
doi: 10.3390/en13246677 |
[23] | 王野, 于涛. 无线室温采集系统在热网均衡控制中的应用[J]. 控制工程, 2017, 24(11):2380-2386. |
WANG Ye, YU Tao. Application of the wireless room temperature acquisition system in heating network equilibrium control[J]. Control Engineering of China, 2017, 24(11):2380-2386. | |
[24] | 张琪曼. 地表温度热红外遥感反演理论及实践研究[J]. 科技视界, 2022(3):18-20. |
ZHANG Qiman. Research on theory and practice of thermal infrared remote sensing inversion of surface temperature[J]. Science & Technology Vision, 2022(3):18-20. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||