Integrated Intelligent Energy ›› 2023, Vol. 45 ›› Issue (11): 70-81.doi: 10.3969/j.issn.2097-0706.2023.11.009
• Electrical Economy and Trading • Previous Articles Next Articles
SHEN Rongrong1(), JIANG Feng1(
), WEI Zequan1(
), LIU Shimin1(
), QI Ze2,*(
)
Received:
2023-06-06
Revised:
2023-06-29
Published:
2023-11-25
Supported by:
CLC Number:
SHEN Rongrong, JIANG Feng, WEI Zequan, LIU Shimin, QI Ze. Comprehensive benefit evaluation for Energy Internet park projects based on combined weight of game[J]. Integrated Intelligent Energy, 2023, 45(11): 70-81.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2023.11.009
Table 1
Weights of the evaluation indicators
二级指标 | 信息熵 | 熵权 | 排序 |
---|---|---|---|
建设投资成本O11 | 0.999 4 | 0.028 6 | 11 |
投资回收期O12 | 0.997 6 | 0.114 6 | 4 |
运维管理成本O13 | 0.997 3 | 0.129 8 | 3 |
运营效益O14 | 0.998 8 | 0.057 7 | 7 |
用户满意度O21 | 0.999 6 | 0.018 5 | 14 |
智能电表普及度O22 | 0.999 0 | 0.048 8 | 9 |
供电可靠性O23 | 0.997 1 | 0.137 9 | 2 |
单位用能成本O24 | 0.999 0 | 0.049 2 | 8 |
清洁能源比例O31 | 0.997 7 | 0.109 3 | 5 |
CO2综合减排量O32 | 0.999 5 | 0.023 0 | 13 |
清洁能源消纳率O33 | 0.997 1 | 0.138 5 | 1 |
工程成熟度O41 | 0.999 2 | 0.038 3 | 10 |
项目可扩展性O42 | 0.999 4 | 0.027 3 | 12 |
传输容量O43 | 0.998 4 | 0.078 3 | 6 |
Table 3
Comparison between the best indicator and other indicators
指标 | 最优指标 | ||||
---|---|---|---|---|---|
投资回收期O12 | 清洁能源消纳率O33 | 项目可扩展性O42 | 运营收益O14 | CO2综合减排量O32 | |
O11 | 3 | 3 | 4 | 2 | 3 |
O12 | 1 | 2 | 3 | 2 | 2 |
O13 | 2 | 2 | 4 | 3 | 2 |
O14 | 3 | 3 | 4 | 1 | 2 |
O21 | 4 | 4 | 6 | 3 | 3 |
O22 | 6 | 8 | 9 | 7 | 6 |
O23 | 3 | 3 | 3 | 2 | 3 |
O24 | 3 | 3 | 3 | 2 | 3 |
O31 | 4 | 5 | 3 | 4 | 3 |
O32 | 4 | 3 | 4 | 6 | 1 |
O33 | 3 | 1 | 2 | 3 | 2 |
O41 | 6 | 5 | 3 | 4 | 5 |
O42 | 5 | 6 | 1 | 4 | 6 |
O43 | 7 | 6 | 5 | 4 | 7 |
Table 4
Comparison between the worst indicator and other indicators
指标 | 最劣指标 | ||||
---|---|---|---|---|---|
传输容量O43 | 智能电表普及度O22 | 智能电表普及度O22 | 智能电表普及度O22 | 传输容量O43 | |
O11 | 7 | 6 | 7 | 6 | 6 |
O12 | 7 | 7 | 7 | 6 | 7 |
O13 | 6 | 5 | 7 | 5 | 7 |
O14 | 6 | 6 | 6 | 7 | 6 |
O21 | 5 | 5 | 7 | 6 | 7 |
O22 | 2 | 1 | 1 | 1 | 3 |
O23 | 6 | 7 | 6 | 6 | 6 |
O24 | 5 | 6 | 7 | 6 | 7 |
O31 | 6 | 5 | 6 | 6 | 5 |
O32 | 5 | 6 | 5 | 6 | 7 |
O33 | 6 | 8 | 7 | 7 | 6 |
O41 | 3 | 4 | 5 | 6 | 4 |
O42 | 2 | 4 | 9 | 5 | 3 |
O43 | 1 | 3 | 2 | 4 | 1 |
Table 5
Weights of secondary indicators
一级指标 | 综合权重 | 二级指标 | 主观权重 | 客观权重 | 综合权重 | 排序 |
---|---|---|---|---|---|---|
经济效益O1 | 0.342 6 | 建设投资成本O11 | 0.083 3 | 0.028 6 | 0.069 1 | 8 |
投资回收期O12 | 0.095 7 | 0.114 6 | 0.100 6 | 2 | ||
运维管理成本O13 | 0.082 9 | 0.129 8 | 0.095 1 | 4 | ||
运营效益O14 | 0.084 8 | 0.057 7 | 0.077 8 | 6 | ||
社会效益O2 | 0.264 5 | 用户满意度O21 | 0.071 3 | 0.018 5 | 0.057 6 | 10 |
智能电表普及度O22 | 0.031 0 | 0.048 8 | 0.035 6 | 14 | ||
供电可靠性O23 | 0.082 9 | 0.137 9 | 0.097 2 | 3 | ||
单位用能成本O24 | 0.082 8 | 0.049 2 | 0.074 1 | 7 | ||
环境效益O3 | 0.245 1 | 清洁能源比例O31 | 0.069 4 | 0.109 3 | 0.079 7 | 5 |
CO2综合减排量O32 | 0.072 6 | 0.023 0 | 0.059 7 | 9 | ||
清洁能源消纳率O33 | 0.094 1 | 0.138 5 | 0.105 6 | 1 | ||
工程推广效益O4 | 0.147 8 | 工程成熟度O41 | 0.055 1 | 0.038 3 | 0.050 7 | 11 |
项目可扩展性O42 | 0.056 5 | 0.027 3 | 0.048 9 | 12 | ||
传输容量O43 | 0.037 5 | 0.078 3 | 0.048 1 | 13 |
[1] | 国家发展与改革委员会, 国家能源局. 关于推进“互联网+”智慧能源发展的指导意见[R/OL]. 2016. http://www.nea.gov.cn/2016-02/29/c_135141026.html. |
[2] | 朱彤. 能源安全新风险与新逻辑:系统韧性的视角——兼论新逻辑下我国能源安全问题与战略思路[J]. 技术经济, 2023, 42(2):1-10. |
ZHU Tong. New risks and new logics of energy security: From the perspective of system resilience concurrently discussing problem of energy security and strategic thinking under the new logic in China[J]. Journal of Technology Economics, 2023, 42(2):1-10. | |
[3] | 郭政, 吴武清, 刘源, 等. 基于多任务支持向量机的能源互联网数据深度融合方法[J]. 计算机应用与软件, 2023, 40(3):22-27. |
GUO Zheng, WU Wuqing, LIU Yuan, et al. Energy Internet data deep fusion method based on multi-task support vector machine[J]. Computer Applications and Software, 2023, 40(3):22-27. | |
[4] | 原凯, 李敬如, 宋毅, 等. 区域能源互联网综合评价技术综述与展望[J]. 电力系统自动化, 2019, 43(14):41-52,64. |
YUAN Kai, LI Jingru, SONG Yi, et al. Review and prospect of comprehensive evaluation technology of regional energy internet[J]. Automation of Electric Power Systems, 2019, 43(14):41-52,64. | |
[5] | 贺兴, 潘美琪, 唐跃中, 等. 基于数字孪生与元宇宙的能源互联网认知系统论(二):面向复杂系统涌现现象的虚拟仿真推演框架[J/OL]. 中国电机工程学报:1-13(2023-03-24)[2023-05-11]. https://doi.org/10.13334/j.0258-8013.pcsee.223425. |
HE Xing, PAN Meiqi, TANG Yuezhong, et al. System theory on perception of energy internet of things based on digital twins and metaverse (ii): Virtual simulation and analytical deduction framework for emergency phenomenon in complex system[J/OL]. Proceedings of the CSEE:1-13(2023-03-24)[2023-05-11]. https://doi.org/10.13334/j.0258-8013.pcsee.223425. | |
[6] | 刘宇尘, 唐跃中, 钟海旺, 等. 基于价值分配、成本分摊的城市能源互联网交易机制与方法研究[J]. 电网技术, 2023, 47(2):603-614. |
LIU Yuchen, TANG Yuezhong, ZHONG Haiwang, et al. Value distribution and cost allocation model and method of urban energy internet[J]. Power System Technology, 2023, 47(2):603-614. | |
[7] | 郭宴秀, 苏建军, 刘洋, 等. 考虑电热交互和共享储能的多综合能源系统运行优化[J]. 中国电力, 2023, 56(4):138-145. |
GUO Yanxiu, SU Jianjun, LIU Yang, et al. Optimal operation of multiple integrated energy systems considering power and heat interaction and shared energy storage system[J]. Electric Power, 2023, 56(4):138-145. | |
[8] | 曾鸣, 刘英新, 周鹏程, 等. 综合能源系统建模及效益评价体系综述与展望[J]. 电网技术, 2018, 42(6):1697-1708. |
ZENG Ming, LIU Yingxin, ZHOU Pengcheng, et al. Review and prospects of integrated energy system modeling and benefit evaluation[J]. Power System Technology, 2018, 42(6):1697-1708. | |
[9] | 柴鹏飞, 孙雅娟, 沈可, 等. 基于数据包络分析的电能质量综合评估方法研究[J]. 电测与仪表, 2016, 53(4):124-128. |
CHAI Pengfei, SUN Yajuan, SHEN Ke, et al. Research on synthetic evaluation method of power quality based on data envelopment analysis[J]. Electrical Measurement & Instrumentation, 2016, 53(4):124-128. | |
[10] | 杨雍琦, 薛万磊, 赵昕, 等. 基于贝叶斯最优最劣法和云模型的售电公司信用风险评价模型研究[J]. 现代电力, 2022, 39(4):449-459. |
YANG Yongqi, XUE Wanlei, ZHAO Xi, et al. Research on credit risk evaluation model of electricity selling company based on bayesian best worst method and cloud model[J]. Modern Electric Power, 2022, 39(4):449-459. | |
[11] | 申融容. 热电解耦灵活性改造项目综合评价研究[D]. 北京: 华北电力大学, 2022. |
SHEN Rongrong. Comprehensive evaluation of decoupling of thermal and power generation flexibility retrofitting project[D]. Beijing: North China Electric Power University, 2022. | |
[12] |
GUO S, QI Z. A fuzzy best-worst multi-criteria group decision-making method[J]. IEEE Access, 2021, 9: 118941-118952.
doi: 10.1109/ACCESS.2021.3106296 |
[13] | GUO S, ZHAO H R. Fuzzy best-worst multi-criteria decision-making method and its applications[J]. Knowledge-based Systems, 2017, 121, 23-31. |
[14] | 孔祥玉, 李闯, 郑峰, 等. 基于经验模态分解与特征相关分析的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(5):46-56. |
KONG Xiangyu, LI Chuang, ZHENG Feng, et al. Short-term load forecasting method based on empirical mode decomposition and feature correlation analysis[J]. Automation of Electric Power Systems, 2019, 43(5):46-56. | |
[15] | 杨琦, 马世英, 唐晓骏, 等. 微电网规划评价指标体系构建与应用[J]. 电力系统自动化, 2012, 36(9):13-17. |
YANG Qi, MA Shiying, TANG Xiaojun, et al. Evaluation index system construction and application of microgrid planning[J]. Automation of Electric Power Systems, 2012, 36(9):13-17. | |
[16] | 吴强, 程林, 黄河, 等. 基于层次分析法的能源互联网综合能效评估方法[J]. 电气应用, 2017, 36(17):62-68. |
WU Qiang, CHENG Lin, HUANG He, et al. Comprehensive energy efficiency evaluation method of energy internet based on analytic hierarchy process[J]. Electrical Applications, 2017, 36(17):62-68. | |
[17] | 王文彬, 郑蜀江, 范瑞祥, 等. “双碳”背景下微网分布式电能交易绩效评价指标与方法[J]. 上海交通大学学报, 2022, 56(3):312-324. |
WANG Wenbin, ZHENG Shujiang, FAN Ruixiang, et al. Performance evaluation lndex and method of micro-grid distributed electricity trading under the background of "carbon peaking and carbon neutrality"[J]. Journal of Shanghai Jiaotong University, 2022, 56(3):312-324. | |
[18] | 董文杰, 田廓, 陈云斐, 等. 能源互联网下基于博弈与证据理论的综合能源系统评价方法研究[J]. 智慧电力, 2020, 48(7):73-80. |
DONG Wenjie, TIAN Kuo, CHEN Yunfei, et al. Evaluation method of comprehensive energy system based on game theory & evidence theory under energy lnternet[J]. Smart Power, 2020, 48(7):73-80. | |
[19] | 杨永标, 郑红娟, 霍现旭, 等. 小型能源互联网多源优化综合评估技术研究[J]. 电器与能效管理技术, 2017 (8):53-60. |
YANG Yongbiao, ZHENG Hongjuan, HUO Xianxu, et al. Research on multi-source optimization evaluation technology of small energy lnternet[J]. Electrical & Energy Management Technology, 2017(8):53-60. | |
[20] | 赵国涛, 钱国明, 王盛, 等. “双碳”目标下火电企业绿色低碳转型的对策分析[J]. 华电技术, 2021, 43(10): 11-21. |
ZHAO Guotao, QIAN Guoming, WANG Sheng, et al. Analysis on solution for green and low-carbon transformation of thermal power enterprises to achieve carbon peak and carbon neutrality[J]. Huadian Technology, 2021, 43(10): 11-21. | |
[21] | 王志杰, 陈文, 朱晓星, 等. 基于数据驱动的火电机组灵活性综合评价方法及应用[J/OL]. 现代电力:1-7(2023-06-27)[2023-06-28]. https://doi.org/10.19725/j.cnki.1007-2322.2022.0281. |
WANG Zhijie, CHEN Wen, ZHU Xiaoxing, et al. Comprehensive evaluation method for thermal power unit flexibility based on data-driven and its application[J/OL]. Modern Electric Power:1-7(2023-06-27)[2023-06-28]. https://doi.org/10.19725/j.cnki.1007-2322.2022.0281. | |
[22] |
李彬, 胡纯瑾, 王婧. 基于EEMD-BiLSTM的可调节负荷预测方法[J]. 综合智慧能源, 2022, 44(9): 33-39.
doi: 10.3969/j.issn.2097-0706.2022.09.005 |
LI Bin, HU Chunjin, WANG Jing. Prediction method for adjustable load based on EEMD-BiLSTM[J]. Integrated Intelligent Energy, 2022, 44(9): 33-39.
doi: 10.3969/j.issn.2097-0706.2022.09.005 |
|
[23] | 王敏, 邹婕, 王惠琳, 等. 基于改进的AHP-CRITIC-MARCOS配电网设备风险评估方法[J]. 电力系统保护与控制, 2023, 51(3):164-172. |
WANG Min, ZOU Jie, WANG Huilin, et al. Improved AHP-CRITIC-MARCOS-based risk assessment method for distribution network equipment[J]. Power System Protection and Control, 2023, 51(3):164-172. | |
[24] |
SAŁABUN W, WĄTRÓBSKI J, SHEKHOVTSOV A. Are mcda methods benchmarkable?A comparative study of topsis, vikor, copras, and promethee ii methods[J]. Symmetry, 2020, 12(9): 1549.
doi: 10.3390/sym12091549 |
[25] |
KIZIELEWICZ B, WĄTRÓBSKI J, SAŁABUN W. Identification of relevant criteria set in the MCDA process—Wind farm location case study[J]. Energies, 2020, 13(24): 6548.
doi: 10.3390/en13246548 |
[26] |
孙健, 王寅武, 吴可欣, 等. 综合能源系统中热泵技术研究与应用[J]. 综合智慧能源, 2023, 45(4): 1-11.
doi: 10.3969/j.issn.2097-0706.2023.04.001 |
SUN Jian, WANG Yinwu, WU Kexin, et al. Research and application of heat pump technology in integrated energy systems[J]. Integrated Intelligent Energy, 2023, 45(4): 1-11.
doi: 10.3969/j.issn.2097-0706.2023.04.001 |
|
[27] | 赵会茹, 李兵抗, 苏群, 等. 基于博弈论组合赋权和改进TOPSIS的新能源发电商信用风险评价模型研究[J/OL]. 现代电力:1-11(2022-10-29)[2023-05-11]. https://doi.org/10.19725/j.cnki.1007-2322.2022.0027. |
ZHAO Huiru, LI Bingkang, SU Qun, et al. Research on credit risk evaluation model of new energy power producers based on game theory combination weights and improved TOPSIS[J/OL]. Modern Electric Power:1-11(2022-10-29)[2023-05-11]. https://doi.org/10.19725/j.cnki.1007-2322.2022.0027. | |
[28] | 张尹路, 李文甲, 康利改. 智慧供热在分布式燃气供热中的应用与优化提升[J]. 华电技术, 2020, 42(11): 14-20. |
ZHANG Yinlu, LI Wenjia, KANG Ligai. Application and optimization of intelligent heating in distribute gas heating systems[J]. Huadian Technology, 2020, 42(11): 14-20. |
[1] | WANG Zening, LI Wenzhong, LI Donghui, XU Taishan, YU Jun. Construction of the hierarchical autonomous power balance model for software-defined new power systems [J]. Integrated Intelligent Energy, 2024, 46(7): 1-11. |
[2] | HE Fangbo, PEI Ligeng, ZHENG Rui, FAN Kangjian, ZHANG Xiaoman, LI Gengfeng. Construction of new power system in Shaanxi Province with the collaboration of source-network-load-storage [J]. Integrated Intelligent Energy, 2024, 46(7): 40-46. |
[3] | YU Haibin, LU Wenzhou, TANG Liang, ZHANG Yuchen, ZOU Xiangyu, JIANG Yuliang, LIU Jiabao. Economic dispatch and profit distribution strategy for multi-agent virtual power plants considering risk preferences [J]. Integrated Intelligent Energy, 2024, 46(6): 66-77. |
[4] | WANG Liang, DENG Song. Anomalous data detection methods for new power systems [J]. Integrated Intelligent Energy, 2024, 46(5): 12-19. |
[5] | YU Sheng, ZHOU Xia, SHEN Xicheng, DAI Jianfeng, LIU Zengji. Risk analysis on the source-grid-load-storage system affected by cyber attacks [J]. Integrated Intelligent Energy, 2024, 46(5): 41-49. |
[6] | WANG Yongli, WANG Yanan, MA Ziben, QIN Yumeng, CHEN Xichang, TENG Yue. Effectiveness evaluation on energy trading systems taking blockchain technology [J]. Integrated Intelligent Energy, 2024, 46(4): 78-84. |
[7] | DING Leyan, KE Song, YANG Jun, SHI Xingye. Control strategy of virtual synchronous generators based on adaptive control parameter setting [J]. Integrated Intelligent Energy, 2024, 46(3): 35-44. |
[8] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[9] | LI Chengyun, YANG Dongsheng, ZHOU Bowen, YANG Bo, LI Guangdi. Digitization of new-type electric power systems based on digital twin technology [J]. Integrated Intelligent Energy, 2024, 46(2): 1-11. |
[10] | ZHANG Xinyi, YANG Bo. Stability analysis on islanded microgrids with grid-forming and grid-following converters [J]. Integrated Intelligent Energy, 2024, 46(2): 12-18. |
[11] | SUN Na, DONG Haiying, CHEN Wei, MA Hulin. Secondary frequency modulation control strategy for large-scale grid-side energy storage devices in new power systems [J]. Integrated Intelligent Energy, 2024, 46(2): 59-67. |
[12] | KONG Huichao, WANG Wenzhong, LEI Yi, PENG Jing, LI Haibo. Electric power and energy rebalancing method for new power systems at receiving ends of industrial parks [J]. Integrated Intelligent Energy, 2024, 46(2): 68-74. |
[13] | LIN Jiajun, YAN Weidan, HU Junhua, ZHENG Yiming, SHAO Xianjun, GUO Bingyan. Application and prospect of multimodal knowledge graph in electric power operation inspection [J]. Integrated Intelligent Energy, 2024, 46(1): 65-74. |
[14] | YU Haibin, DONG Ye, WENG Jinde, HU Xinchen, YAN Wei, WU Difan. Research on the application and economic benefits of 5G slice in the urban distribution network [J]. Integrated Intelligent Energy, 2024, 46(1): 75-83. |
[15] | HU Chao, PENG Wenhe, FANG Zhijian. Hierarchical optimization scheduling for electric vehicles with PV-power storage charging stations [J]. Integrated Intelligent Energy, 2023, 45(9): 11-17. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||