Integrated Intelligent Energy ›› 2024, Vol. 46 ›› Issue (1): 56-64.doi: 10.3969/j.issn.2097-0706.2024.01.007
• Cyber-Physical Security • Previous Articles Next Articles
LI Bin1(), BAI Xuefeng1,*(
), LI Zhichao1(
), WANG Shijun2(
), LIU Chun2(
), CHENG Ziyun2(
)
Received:
2023-01-02
Revised:
2023-03-31
Published:
2024-01-25
Supported by:
CLC Number:
LI Bin, BAI Xuefeng, LI Zhichao, WANG Shijun, LIU Chun, CHENG Ziyun. Design and prospect of distributed electric heating interactive mode based on federated learning[J]. Integrated Intelligent Energy, 2024, 46(1): 56-64.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2024.01.007
[1] | 别朝红, 林超凡, 李更丰, 等. 能源转型下弹性电力系统的发展与展望[J]. 中国电机工程学报, 2020, 40(9):2735-2744. |
BIE Chaohong, LIN Chaofan, LI Gengfeng, et al. Development and prospect of resilient power system in the context of energy transition[J]. Proceedings of the CSEE, 2020, 40(9): 2735-2744. | |
[2] |
王盛, 谈健, 史文博, 等. 英国新型电力系统建设经验以及对我国省级电网发展启示[J]. 综合智慧能源, 2022, 44(7): 19-32.
doi: 10.3969/j.issn.2097-0706.2022.07.003 |
WANG Sheng, TAN Jian, SHI Wenbo, et al. Practices of the new power system in the UK and inspiration for the development of provincial power systems in China[J]. Integrated Intelligent Energy, 2022, 44(7): 19-32.
doi: 10.3969/j.issn.2097-0706.2022.07.003 |
|
[3] | 严干贵, 蔡长兴, 段双明, 等. 考虑电池储能单元分组优化的微电网运行控制策略[J]. 电力系统自动化, 2020, 44(23): 38-46. |
YAN Gangui, CAI Changxing, DUAN Shuangming, et al. Operation control strategy of microgrid considering grouping optimization of battery energy storage units[J]. Automation of Electric Power Systems, 2020, 44(23): 38-46. | |
[4] | 刘吉臻, 王玮, 胡阳, 等. 新能源电力系统控制与优化[J]. 控制理论与应用, 2016, 33(12): 1555-1561. |
LIU Jizhen, WANG Wei, HU Yang, et al. Control and optimization of alternate electrical power system with renewable energy sources[J]. Control Theory & Applications, 2016, 33(12): 1555-1561. | |
[5] | 国家发展改革委, 国家能源局, 财政部, 等. 关于印发北方地区冬季清洁取暖规划(2017—2021年)的通知[EB/OL].(2017-12-20)[2023-03-31]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/201712/t20171220_962623.html. |
[6] | 央广网. 天津“煤改电”工程全部竣工惠及46万户居民[EB/OL].(2019-11-07)[2023-03-31]. http://www.cnr.cn/tj/jrtj/20191107/t20191107_524848423.shtml. |
[7] | 央视新闻. 北京清洁取暖 “煤改电”用户已达130万[EB/OL].(2020-11-21)[2023-03-31]. https://www.thecover.cn/news/6126854. |
[8] | 王德宇, 宋亚岚. 通州区“煤改电”智能化监测平台建设实践[J]. 广播电视网络, 2021, 28(5):57-59. |
WANG Deyu, SONG Yalan. Construction practice of intelligent monitoring platform for "Replacing Coal with Electricity" in Tongzhou district[J]. Radio & Television Network, 2021, 28(5): 57-59. | |
[9] | 王昆, 刘洋. 河北:“光伏+电采暖”让农民清洁温暖过冬[EB/OL].(2021-12-01)[2023-03-31]. https://hebei.ifeng.com/c/8BZcVDCDQ6I. |
[10] | 祁兵, 张露露, 李彬, 等. 基于电压监测的分布式电采暖实时优化控制策略[J]. 现代电力, 2021, 38(4): 449-454. |
QI Bing, ZHANG Lulu, LI Bin, et al. A Voltage monitoring-based realtime optimized control strategy for distributed electric heating[J]. Modern Electric Power, 2021, 38(4): 449-454. | |
[11] | 严干贵, 阚天洋, 杨玉龙, 等. 基于深度强化学习的分布式电采暖参与需求响应优化调度[J]. 电网技术, 2020, 44(11):4140-4147. |
YAN Gangui, KAN Tianyang, YANG Yulong, et al. Demand response optimal scheduling for distributed electric heating based on deep reinforcement learning[J]. Power Grid Technology, 2020, 44(11): 4140-4147. | |
[12] | 曾建电, 王田, 贾维嘉, 等. 传感云研究综述[J]. 计算机研究与发展, 2017, 54(5):925-939. |
ZENG Jiandian, WANG Tian, JIA Weijia, et al. A survey on sensor-cloud[J]. Journal of Computer Research and Development, 2017, 54(5):925-939. | |
[13] | 张依琳, 陈宇翔, 田晖, 等. 联邦学习在边缘计算场景中应用研究进展[J]. 小型微型计算机统, 2021, 42(12):2645-2653. |
ZHANG Yilin, CHEN Yuxiang, TIAN Hui, et al. Survey on federated learning application on scenarios of edge computing[J]. Journal of Chinese Computer Systems, 2021, 42(12): 2645-2653. | |
[14] | 范帅, 郏琨琪, 郭炳庆, 等. 分散式电采暖负荷协同优化运行策略[J]. 电力系统自动化, 2017, 41(19):20-29. |
FAN Shuai, JIA Kunqi, GUO Bingqing, et al. Collaborative optimal operation strategy for decentralized electric heating loads[J]. Power System Automation, 2017, 41(19):20-29. | |
[15] | 李香龙, 马龙飞, 赵向阳, 等. 基于LSTM网络的时间多尺度电采暖负荷预测[J]. 电力系统及其自动化学报, 2021, 33(4):71-75. |
LI Xianglong, MA Longfei, ZHAO Xiangyang, et al. Multi-time scale electric heating load forecasting based on long short-term memory network[J]. Proceedings of the CSU-EPSA, 2021, 33(4): 71-75. | |
[16] | 肖勇, 吴昊文, 王宗义, 等. 面向可中断负荷控制的需求响应通信业务优化[J]. 电力系统自动化, 2020, 44(15):36-43. |
XIAO Yong, WU Haowen, WANG Zongyi, et al. Communication service optimization of demand response for interruptible load control[J]. Power System Automation, 2020, 44(15): 36-43. | |
[17] | 李光辉, 李宜璟, 胡世红. 移动边缘计算中基于联邦学习的视频请求预测和协作缓存策略[J]. 电子与信息学报, 2023, 45(1):218-226. |
LI Guanghui, LI Yijing, HU Shihong. Video request prediction and cooperative caching strategy based on federated learning in mobile edge computing[J]. Journal of Electronics & Information Technology, 2023, 45(1):218-226. | |
[18] | CHENG K, FAN T, JIN Y, et al. Secureboost: A lossless federated learning framework[J]. IEEE Intelligent Systems, 2021, 36(6): 87-98. |
[19] |
AONO Y, HAYASHI T, WANG L, et al. Privacy-preserving deep learning via additively homomorphic encryption[J]. IEEE Transactions on Information Forensics and Security, 2017, 13(5): 1333-1345.
doi: 10.1109/TIFS.2017.2787987 |
[20] | NASR M, SHOKRI R, HOUMANSADR A. Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning[C]// 2019 IEEE symposium on security and privacy (SP). IEEE, 2019: 739-753. |
[21] | BONAWITZ K, IVANOV V, KREUTER B, et al. Practical secure aggregation for privacy-preserving machine learning[C]// Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. 2017: 1175-1191. |
[22] | 刘艺璇, 陈红, 刘宇涵, 等. 联邦学习中的隐私保护技术[J]. 软件学报, 2022, 33(3):1057-1092. |
LIU Yixuan, CHEN Hong, LIU Yuhan, et al. Privacy-preserving techniques in federated learning[J]. Journal of Software, 2022, 33(3): 1057-1092. | |
[23] |
ZHU T, LI G, ZHOU W, et al. Differentially private data publishing and analysis: A survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(8): 1619-1638.
doi: 10.1109/TKDE.2017.2697856 |
[24] | GEYER R C, KLEIN T, NABI M. Differentially private federated learning: A client level perspective[J]. arXiv preprint arXiv:1712.07557, 2017. |
[25] |
LU Y, HUANG X, DAI Y, et al. Differentially private asynchronous federated learning for mobile edge computing in urban informatics[J]. IEEE Transactions on Industrial Informatics, 2019, 16(3): 2134-2143.
doi: 10.1109/TII.9424 |
[26] |
ARACHCHIGE P C M, BERTOK P, KHALIL I, et al. Local differential privacy for deep learning[J]. IEEE Internet of Things Journal, 2019, 7(7): 5827-5842.
doi: 10.1109/JIoT.6488907 |
[27] |
WANG J, WU L, WANG H, et al. An efficient and privacy-preserving outsourced support vector machine training for internet of medical things[J]. IEEE Internet of Things Journal, 2020, 8(1): 458-473.
doi: 10.1109/JIoT.6488907 |
[28] |
王腾, 霍峥, 黄亚鑫, 等. 联邦学习中的隐私保护技术研究综述[J]. 计算机应用, 2023, 43(2):437-449.
doi: 10.11772/j.issn.1001-9081.2021122072 |
WANG Teng, HUO Zheng, HUANG Yaxin, et al. Review on privacy-preserving technologies in federated learning[J]. Journal of Computer Applications, 2023, 43(2):437-449.
doi: 10.11772/j.issn.1001-9081.2021122072 |
|
[29] | 陈智罡, 王箭, 宋新霞. 全同态加密研究[J]. 计算机应用研究, 2014, 31(6):1624-1631. |
CHEN Zhigang, WANG Jian, SONG Xinxia. Survey on fully homomorphic encryption[J]. Journal of Computer Applications, 2014, 31(6): 1624-1631.
doi: 10.3724/SP.J.1087.2011.01624 |
|
[30] |
SHAMIR A. How to share a secret[J]. Communications of the ACM, 1979, 22(11): 612-613..
doi: 10.1145/359168.359176 |
[31] | BONAWITZ K, IVANOV V, KREUTER B, et al. Practical secure aggregation for privacy-preserving machine learning[C]// Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. 2017: 1175-1191. |
[32] | KONEČNÝ J. Stochastic,distributed and federated optimization for machine learning[J]. arXiv preprint arXiv:1707.01155, 2017. |
[33] | LU S, ZHANG Y, WANG Y, et al. Learn electronic health records by fully decentralized federated learning[J]. arXiv preprint arXiv:1912.01792, 2019. |
[34] | BRENDAN MCMAHAN H, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[J]. arXiv e-prints, 2016: arXiv: 1602.05629. |
[35] |
SATTLER F, WIEDEMANN S, MÜLLER K R, et al. Robust and communication-efficient federated learning from Non-IID data[J]. IEEE transactions on neural networks and learning systems, 2019, 31(9): 3400-3413.
doi: 10.1109/TNNLS.5962385 |
[36] | 高晗, 田育龙, 许封元, 等. 深度学习模型压缩与加速综述[J]. 软件学报, 2021, 32(1):68-92. |
GAO Han, TIAN Yulong, XU Fengyuan, et al. Survey of deep learning model compression and acceleration[J]. Journal of Software, 2021, 32(1): 68-92. | |
[37] | ZHU Z, HONG J, ZHOU J. Data-free knowledge distillation for heterogeneous federated learning[C]// International Conference on Machine Learning. PMLR, 2021: 12878-12889. |
[38] | KONEČNÝ J, MCMAHAN H B, RAMAGE D, et al. Federated optimization: Distributed machine learning for on-device intelligence[J]. arXiv preprint arXiv:1610.02527, 2016. |
[39] | SATTLER F, MARBAN A, RISCHKE R, et al. Communication-efficient federated distillation[J]. arXiv preprint arXiv:2012.00632, 2020. |
[40] |
MILLS J, HU J, MIN G. Communication-efficient federated learning for wireless edge intelligence in IoT[J]. IEEE Internet of Things Journal, 2019, 7(7): 5986-5994.
doi: 10.1109/JIoT.6488907 |
[41] | LIU L, ZHANG J, SONG S H, et al. Client-edge-cloud hierarchical federated learning[C]// ICC 2020—2020 IEEE International Conference on Communications (ICC). IEEE, 2020: 1-6. |
[42] | JIANG Y, KONEČNÝ J, RUSH K, et al. Improving federated learning personalization via model agnostic meta learning[J]. arXiv preprint arXiv:1909.12488, 2019. |
[43] | SMITH V, CHIANG C K, SANJABI M, et al. Federated multi-task learning[J]. Advances in Neural Information Processing Systems, 2017, 30. |
[44] | WANG X, HAN Y, WANG C, et al. In-edge AI: Intelligentizing mobile edge computing, caching and communication by federated learning[J]. IEEE Network, 2019, 33(5): 156-165. |
[45] |
WU Q, HE K, CHEN X. Personalized federated learning for intelligent IoT applications: A cloud-edge based framework[J]. IEEE Open Journal of the Computer Society, 2020, 1: 35-44.
doi: 10.1109/OJCS |
[46] | LI D, WANG J. FedMD: Heterogenous federated learning via model distillation[J]. arXiv preprint arXiv:1910.03581, 2019. |
[47] | CHEN Y, QIN X, WANG J, et al. Fedhealth: A federated transfer learning framework for wearable healthcare[J]. IEEE Intelligent Systems, 2020, 35(4): 83-93. |
[48] | FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]// International Conference on Machine Learning. PMLR, 2017: 1126-1135. |
[49] |
PENG Z, XU J, CHU X, et al. Vfchain: Enabling verifiable and auditable federated learning via blockchain systems[J]. IEEE Transactions on Network Science and Engineering, 2021, 9(1): 173-186.
doi: 10.1109/TNSE.2021.3050781 |
[50] |
ZHANG Y, LIU L, GU Y, et al. Offloading in software defined network at edge with information asymmetry: A contract theoretical approach[J]. Journal of Signal Processing Systems, 2016, 83: 241-253.
doi: 10.1007/s11265-015-1038-9 |
[51] | KHAN L U, PANDEY S R, TRAN N H, et al. Federated learning for edge networks: Resource optimization and incentive mechanism[J]. IEEE Communications Magazine, 2020, 58(10): 88-93. |
[52] |
周全兴, 李秋贤, 丁红发, 等. 基于博弈论优化的高效联邦学习方案[J]. 计算机工程, 2022, 48(8):144-151,159.
doi: 10.19678/j.issn.1000-3428.0062413 |
ZHOU Quanxing, LI Qiuxian, DING Hongfa, et al. Efficient federated learning scheme based on game theory optimization[J]. Computer Engineering, 2022, 48(8):144-151,159.
doi: 10.19678/j.issn.1000-3428.0062413 |
|
[53] |
莫梓嘉, 高志鹏, 杨杨, 等. 面向车联网数据隐私保护的高效分布式模型共享策略[J]. 通信学报, 2022, 43(4):83-94.
doi: 10.11959/j.issn.1000-436x.2022074 |
MO Zijia, GAO Zhipeng, YANG Yang, et al. Efficient distributed model sharing strategy for data privacy protection in Internet of vehicles[J]. Journal on Communications, 2022, 43(4): 83-94.
doi: 10.11959/j.issn.1000-436x.2022074 |
|
[54] |
王鑫, 周泽宝, 余芸, 等. 一种面向电能量数据的联邦学习可靠性激励机制[J]. 计算机科学, 2022, 49(3):31-38.
doi: 10.11896/jsjkx.210700195 |
WANG Xin, ZHOU Zebao, YU Yun, et al. Reliable incentive mechanism for federated learning of electric metering data[J]. Computer Science, 2022, 49(3): 31-38.
doi: 10.11896/jsjkx.210700195 |
|
[55] | 朱建明, 张沁楠, 高胜, 等. 基于区块链的隐私保护可信联邦学习模型[J]. 计算机学报, 2021, 44(12):2464-2484. |
ZHU Jianming, ZHANG Qinnan, GAO Sheng, et al. Privacy preserving and trustworthy federated learning model based on blockchain[J]. Chinese Journal of Computers, 2021, 44(12): 2464-2484. |
[1] | LI Feifei, XU Huiwei, CUI Jindong. Research on the influencing factors of carbon emissions from petrochemical industry in Jilin Province based on the STIRPAT model [J]. Integrated Intelligent Energy, 2024, 46(8): 12-19. |
[2] | LI Feifei, WANG Shuhong, CUI Jindong. Study on influencing factors of automobile carbon emissions from the perspective of whole life cycle: A case study of Jilin Province [J]. Integrated Intelligent Energy, 2024, 46(8): 20-27. |
[3] | ZHAO Dan, ZHU Limin, HU Shen, HAN Shiqi. Construction of an enterprise carbon asset valuation model based on fuzzy real options [J]. Integrated Intelligent Energy, 2024, 46(8): 28-35. |
[4] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[5] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[6] | WANG Zening, LI Wenzhong, LI Donghui, XU Taishan, YU Jun. Construction of the hierarchical autonomous power balance model for software-defined new power systems [J]. Integrated Intelligent Energy, 2024, 46(7): 1-11. |
[7] | YIN Linfei, MENG Yujie. Short-term wind power forecasting based on DenseNet convolutional neural networks [J]. Integrated Intelligent Energy, 2024, 46(7): 12-20. |
[8] | SUN Wenjie, YANG Zhile, GUO Yuanjun, YAO Wenjiao, XU Huan, ZHOU Bowen. An estimation method for state of health of sodium-ion batteries [J]. Integrated Intelligent Energy, 2024, 46(7): 74-80. |
[9] | XU Zhifan, LI Huasen, LI Wenyuan, YU Kai. State of charge prediction for lithium-ion batteries based on KF-RCMNN [J]. Integrated Intelligent Energy, 2024, 46(7): 81-86. |
[10] | WANG Jun, TIAN Hao, ZHAO Ergang, SHU Zhan, WAN Zijing. Low-carbon operation control on park-level integrated energy systems considering shared energy storage devices for electric vehicles [J]. Integrated Intelligent Energy, 2024, 46(6): 16-26. |
[11] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
[12] | WANG Lin, KONG Xiaomin, ZHOU Zhongyu, LIU Jianping, WANG Xiaodong, ZHANG Ning. Distributed photovoltaic-energy storage reactive power optimization method for distribution networks under cloud energy storage mode [J]. Integrated Intelligent Energy, 2024, 46(6): 44-53. |
[13] | YU Haibin, LU Wenzhou, TANG Liang, ZHANG Yuchen, ZOU Xiangyu, JIANG Yuliang, LIU Jiabao. Economic dispatch and profit distribution strategy for multi-agent virtual power plants considering risk preferences [J]. Integrated Intelligent Energy, 2024, 46(6): 66-77. |
[14] | ZHAO Changwei, WANG Hui, GU Zhicheng, LIU Xubin, ZHU Guangming, GE Leijiao. Key technologies of the evaluation on distributed wind-storage systems' frequency and voltage regulation capacities [J]. Integrated Intelligent Energy, 2024, 46(6): 78-87. |
[15] | ZHUO Chaoran, XIN Jie, HONG Hanzhuo, AN Bang, LI Ning. Review on impedance modeling of grid-connected inverters under weak grid conditions [J]. Integrated Intelligent Energy, 2024, 46(6): 88-101. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||