Integrated Intelligent Energy ›› 2024, Vol. 46 ›› Issue (2): 36-42.doi: 10.3969/j.issn.2097-0706.2024.02.005
• AI Applications in Energy Distribution • Previous Articles Next Articles
GONG Wei1, SUN Dan2,*(), LI Yiyuan3
Received:
2023-06-28
Revised:
2023-07-11
Published:
2024-02-25
Contact:
SUN Dan
E-mail:dan-sun@sac-china.com
Supported by:
CLC Number:
GONG Wei, SUN Dan, LI Yiyuan. Active and reactive power coordinated secondary control based on control sensitivity in microgrids[J]. Integrated Intelligent Energy, 2024, 46(2): 36-42.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2024.02.005
Table 4
Control sensitivities in master-slave control mode
状态变量 | 控制变量 | ||||
---|---|---|---|---|---|
Vd | Ps | Qs | Pw | Qw | |
Pd | 0.024 8 | 0.981 7 | 0.000 1 | 0.973 9 | 0.000 2 |
Qd | 0.069 6 | 0.048 4 | 0.994 5 | 0.067 8 | 0.995 1 |
V1 | 1.000 8 | 0.001 5 | 0.001 3 | 0.001 4 | 0.001 3 |
V3 | 1.004 7 | 0.001 5 | 0.001 3 | 0.001 4 | 0.001 3 |
V4 | 0.997 2 | 0.013 4 | 0.011 4 | 0.013 1 | 0.011 4 |
V5 | 0.995 0 | 0.013 4 | 0.011 4 | 0.016 0 | 0.013 9 |
V6 | 0.988 8 | 0.022 3 | 0.054 7 | 0.013 0 | 0.011 3 |
V7 | 0.985 5 | 0.013 3 | 0.011 3 | 0.024 4 | 0.057 0 |
Table 5
Control sensitivities in peer control mode
状态变量 | 控制变量 | |||||
---|---|---|---|---|---|---|
P0d | Q0d | P0s | Q0s | P0w | Q0w | |
f | 0.016 9 | 0.000 0 | 0.016 6 | 0.000 0 | 0.016 5 | 0.000 0 |
V1 | 0.005 9 | 0.026 7 | 0.002 5 | 0.012 0 | 0.003 5 | 0.011 7 |
V2 | 0.006 8 | 0.027 3 | 0.002 9 | 0.011 7 | 0.003 9 | 0.011 4 |
V3 | 0.005 9 | 0.026 8 | 0.002 5 | 0.012 1 | 0.003 5 | 0.011 8 |
V4 | 0.001 1 | 0.021 9 | 0.001 2 | 0.014 4 | 0.000 0 | 0.014 0 |
V5 | 0.002 0 | 0.021 3 | 0.000 3 | 0.014 0 | 0.001 7 | 0.014 9 |
V6 | 0.002 2 | 0.011 6 | 0.003 8 | 0.030 9 | 0.001 6 | 0.007 4 |
V7 | 0.002 6 | 0.011 3 | 0.001 4 | 0.007 4 | 0.004 0 | 0.031 1 |
[1] | 白小丹, 苗虹, 曾成碧, 等. 适用于低压微网中逆变器无功均分的改进下垂控制策略[J]. 高电压技术, 2020, 46(4):1310-1318. |
BAI Xiaodan, MIAO Hong, ZENG Chengbi, et al. Improved droop control strategy for reactive power sharing of inverters in low-voltage microgrids[J]. High Voltage Engineering, 2020, 46(4):1310-1318. | |
[2] | 刘澧庆, 吴宁, 张焕亨, 等. 微电网经济性二次频率和电压控制的多目标优化模型及仿真验证[J]. 电网技术, 2019, 43(2):521-529. |
LIU Liqing, WU Ning, ZHANG Huanheng, et al. Multi-objective optimization model and its simulation verification for economical secondary frequency and voltage controls of microgrids[J]. Power System Technology, 2019, 43(2):521-529. | |
[3] | 张莹, 孟润泉, 王子昂, 等. 一种基于一致性算法的改进下垂控制策略[J]. 电力系统保护与控制, 2021, 49(14):104-111. |
ZHANG Ying, MENG Runquan, WANG Ziang, et al. An improved droop control strategy based on a consensus algorithm[J]. Power System Protection & Control, 2021, 49(14):104-111. | |
[4] | 马文涛, 王金梅, 苗海东, 等. 不同功率等级逆变器并联的改进下垂控制策略研究[J]. 太阳能学报, 2021, 42(8):16-22. |
MA Wentao, WANG Jinmei, MIAO Haidong, et al. Research on improved droop control strategy for paralleled inverters with different power levels[J]. Acta Energiae Solaris Sinica, 2021, 42(8):16-22. | |
[5] | 李卓城, 王杨, 唐俊苗, 等. 基于逆变器剩余容量及自适应虚拟谐波阻抗控制的孤岛微电网谐波功率分配策略[J]. 电网技术, 2023, 47(3):1169-1178. |
LI Zhuocheng, WANG Yang, TANG Junmiao, et al. Harmonic power allocation strategy in islanded microgrid based on remaining capacity and adaptive virtual harmonic impedance control of inverter[J]. Power System Technology, 2023, 47(3):1169-1178. | |
[6] | 耿英明, 侯梅毅, 朱国防, 等. 基于虚拟阻抗的微电网有功均分阻性下垂控制策略[J]. 电力自动化设备, 2020, 40(10):132-138. |
GENG Yingming, HOU Meiyi, ZHU Guofang, et al. Resistive droop control strategy of active power distribution for microgrid based on virtual impedance[J]. Electric Power Automation Equipment, 2020, 40(10):132-138. | |
[7] | 郑若楠, 韩华, 李国杰, 等. 逆变器串并联型微电网的一种本地主从协调控制策略[J]. 电力系统保护与控制, 2020, 48(23):48-56. |
ZHENG Ruonan, HAN Hua, LI Guojie, et al. A local master-slave coordinated control strategy for series-parallel inverter microgrids[J]. Power System Protection & Control, 2020, 48(23):48-56. | |
[8] | 武文平, 崔扬, 颜湘武. 分布式微电网自同步电压源并列运行策略[J]. 电力系统保护与控制, 2020, 48(12):107-117. |
WU Wenping, CUI Yang, YAN Xiangwu. Operation strategy of parallel self-synchronizing voltage sources in a distributed microgrid[J]. Power System Protection & Control, 2020, 48(12):107-117. | |
[9] | 兰征, 刁伟业, 曾进辉, 等. 含异构微源孤岛微电网内虚拟同步发电机预同步控制策略[J]. 电力系统自动化, 2022, 46(19):154-161. |
LAN Zheng, DIAO Weiye, ZENG Jinhui, et al. Pre-synchronization control strategy of virtual synchronous generator in islanded microgrid with heterogeneous distributed generators[J]. Automation of Electric Power Systems, 2022, 46(19):154-161. | |
[10] | 孙亮, 杨晓飞, 孙立国, 等. 基于改进虚拟同步发电机的多逆变器频率无差控制策略[J]. 电力系统保护与控制, 2021, 49(11):18-27. |
SUN Liang, YANG Xiaofei, SUN Liguo, et al. Frequent deviation-free control for microgrid multi-inverters based on improving a virtual synchronous generator[J]. Power System Protection & Control, 2021, 49(11):18-27. | |
[11] | 韦徵, 姬秋华, 王伟, 等. 适用于电网不对称下的自同步电压源逆变器控制策略[J]. 电力系统自动化, 2021, 45(10):124-131. |
WEI Zheng, JI Qiuhua, WANG Wei, et al. Control strategy of self-synchronous voltage source inverter for asymmetric power grid[J]. Automation of Electric Power Systems, 2021, 45(10):124-131. | |
[12] | 周杨, 张俊勃. 适用于孤岛微电网的电压型虚拟同步发电机自适应惯性控制与频率恢复控制[J]. 南方电网技术, 2022, 16(1):127-136. |
ZHOU Yang, ZHANG Junbo. Adaptive inertia control and frequency recovery control of voltage-controlled virtual synchronous generators for an isolated microgrid[J]. Southern Power System Technology, 2022, 16(1):127-136. | |
[13] | 茆美琴, 奚媛媛, 张榴晨, 等. 基于Q学习的微网二次频率在线自适应控制[J]. 电力系统自动化, 2015, 39(20):26-31. |
MAO Meiqin, XI Yuanyuan, ZHANG Liuchen, et al. Q-learning algorithm based secondary frequency adaptive online control in real-time operation for microgrids[J]. Automation of Electric Power Systems, 2015, 39(20):26-31. | |
[14] | 姜展鹏, 刘洋, 刘守恒, 等. 基于增强学习算法的微电网智能频率协调控制策略[J]. 东北电力技术, 2023, 44(2):1-5. |
JIANG Zhanpeng, LIU Yang, LIU Shouheng, et al. Strategy of intelligent frequency coordination control for microgrid based on reinforcement learning algorithm[J]. Northeast Electric Power Technology, 2023, 44(2):1-5. | |
[15] | 肖宏飞, 林艳艳, 戴鑫, 等. 基于耦合点定功率控制的微网频率调整[J]. 电网技术, 2016, 40(4):1147-1154. |
XIAO Hongfei, LIN Yanyan, DAI Xin, et al. Frequency regulation of microgrid based on definable power control at point of common connection[J]. Power System Technology, 2016, 40(4):1147-1154. | |
[16] | 杨向真, 杨秋强, 杜燕, 等. 采用自适应在线模型辨识的微电网二次调频策略[J]. 电力系统自动化, 2021, 45(20):121-130. |
YANG Xiangzhen, YANG Qiuqiang, DU Yan, et al. Secondary frequency regulation strategy for microgrid adaptive online model identification[J]. Automation of Electric Power Systems, 2021, 45(20):121-130. | |
[17] | 李祥山, 杨晓东, 张有兵, 等. 含母线电压补偿和负荷功率动态分配的直流微电网协调控制[J]. 电力自动化设备, 2020, 40(1):198-204. |
LI Xiangshan, YANG Xiaodong, ZHANG Youbing, et al. Coordinated control of DC microgrid considering bus voltage compensation and load power dynamic sharing[J]. Electric Power Automation Equipment, 2020, 40(1):198-204. | |
[18] | CORSI S. The secondary voltage regulation in Italy[C]// Power Engineering Society Summer Meeting, 2000: 296-304. |
[19] | 郭庆来, 孙宏斌, 张伯明, 等. 协调二级电压控制的研究[J]. 电力系统自动化, 2005, 29(23): 19-24. |
GUO Qinglai, SUN Hongbin, ZHANG Boming, et al. Study on coordinated secondary voltage control[J]. Automation of Electric Power Systems, 2005, 29(23): 19-24. | |
[20] |
王康平, 张兴科, 刘财华, 等. 基于自适应下垂控制的风电场无功电压控制策略[J]. 综合智慧能源, 2022, 44(4): 12-19.
doi: 10.3969/j.issn.2097-0706.2022.04.002 |
WANG Kangping, ZHANG Xingke, LIU Caihua, et al. Reactive power and voltage control strategy based on adaptive droop control for wind power plants[J]. Integrated Intelligent Energy, 2022, 44(4): 12-19.
doi: 10.3969/j.issn.2097-0706.2022.04.002 |
[1] | ZHANG Xinyi, YANG Bo. Stability analysis on islanded microgrids with grid-forming and grid-following converters [J]. Integrated Intelligent Energy, 2024, 46(2): 12-18. |
[2] | TIAN Zeyu, SHA Zhaoyang, ZHAO Quanbin, YAN Hui, CHONG Daotong. Research on control strategy for virtual power plants in response to thermostatically controlled loads [J]. Integrated Intelligent Energy, 2024, 46(1): 28-37. |
[3] | TAN Jiuding, LI Shuaibing, LI Mingche, MA Xiping, KANG Yongqiang, DONG Haiying. Optimized scheduling of the power grid with participation of distributed microgrids considering their uncertainties [J]. Integrated Intelligent Energy, 2024, 46(1): 38-48. |
[4] | FANG Gang, WANG Jing, ZHANG Bobo, WANG Junzhe. Research on optimization algorithm of industrial park microgrid configuration based on Pareto solution set [J]. Integrated Intelligent Energy, 2024, 46(1): 49-55. |
[5] | HU Chao, PENG Wenhe, FANG Zhijian. Hierarchical optimization scheduling for electric vehicles with PV-power storage charging stations [J]. Integrated Intelligent Energy, 2023, 45(9): 11-17. |
[6] | QIAO Lihui, LI Mingche, ZHANG Rui, FANG Zongjie. Capacity configuration method for a battery-SMES hybrid energy storage system in a DC microgrid [J]. Integrated Intelligent Energy, 2023, 45(9): 59-64. |
[7] | BAO Yixin, XU Luoyun, YANG Qiang. Optimized control method for flexible load of a building complex based on MADDPG reinforcement learning [J]. Integrated Intelligent Energy, 2023, 45(7): 61-69. |
[8] | WU Xueqiong, XIA Dong. Review on intelligent planning and decision-making technology for the new active distribution network [J]. Integrated Intelligent Energy, 2023, 45(11): 20-26. |
[9] | WENG Zhipeng, ZHOU Jinghua, LI Jin, ZHAN Zhengdong. Impact of wind and solar power grid connection on microgrid reliability [J]. Integrated Intelligent Energy, 2023, 45(1): 67-74. |
[10] | WANG Xin, CHEN Zucui, BIAN Zaiping, WANG Yeyao, WU Yumiao. Optimal allocation of a wind‒PV‒battery hybrid system in smart microgrid based on particle swarm optimization algorithm [J]. Integrated Intelligent Energy, 2022, 44(6): 52-58. |
[11] | Fang YAO, Xiaona YANG, Leijiao GE, Shuai ZHENG. Optimization of capacity allocation scheme for wind-solar-hydrogen energy system [J]. Integrated Intelligent Energy, 2022, 44(5): 56-63. |
[12] | Xinye DU, Jianxi WANG, Yonghui SUN, Yi HE, Pengpeng WU, Wei ZHOU. Optimal planning of hybrid energy storage systems in microgrids considering seawater desalination and hydrogen production [J]. Integrated Intelligent Energy, 2022, 44(5): 49-55. |
[13] | CHEN Yufeng, WANG Jiahua, XU Jian, JI Xiaopeng. Development of the simulation system for microgrids based on programmable logic software [J]. Integrated Intelligent Energy, 2022, 44(11): 28-35. |
[14] | XU Zhirong, ZHANG Gaorui. Optimization strategy of microgrid responding users' bounded rational demand [J]. Integrated Intelligent Energy, 2022, 44(11): 43-49. |
[15] | WANG Qiuhui, SUN Liguo, LI Jiawen. Optimized configuration of energy storage devices of building photovoltaic system with phase-change energy storage [J]. Huadian Technology, 2021, 43(9): 54-61. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||