Integrated Intelligent Energy ›› 2024, Vol. 46 ›› Issue (9): 1-8.doi: 10.3969/j.issn.2097-0706.2024.09.001
• Carbon Capture and Utilization • Next Articles
JIA Bingke(), LI Zihao, WU Zhenlong*(
), LIU Yanhong
Received:
2024-04-01
Revised:
2024-07-31
Published:
2024-09-25
Contact:
WU Zhenlong
E-mail:beatrice317@163.com;wuzhenlong2020@zzu.edu.cn
Supported by:
CLC Number:
JIA Bingke, LI Zihao, WU Zhenlong, LIU Yanhong. Composite model-free adaptive control of a post-combustion CO2 capture system[J]. Integrated Intelligent Energy, 2024, 46(9): 1-8.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2024.09.001
[1] |
李敏霞, 侯焙然, 王派, 等. 二氧化碳跨临界循环热泵的应用与发展[J]. 综合智慧能源, 2023, 45(4): 12-18.
doi: 10.3969/j.issn.2097-0706.2023.04.002 |
LI Minxia, HOU Beiran, WANG Pai, et al. Application and development of CO2 transcritical cycle heat pumps[J]. Integrated Intelligent Energy, 2023, 45(4): 12-18.
doi: 10.3969/j.issn.2097-0706.2023.04.002 |
|
[2] | 习近平在第七十五届联合国大会一般性辩论上的讲话[EB/OL].(2020-09-22)[2024-03-17]. http://www.cppcc.gov.cn/zxww/2020/09/23/ARTI1600819264410115.shtml?from=groupmessage. |
[3] | Global CCS Institute. The global status of CCS: 2018[R]. Melbourne, Australia: Global CCS Institute, 2018. |
[4] | UNFCCC. Historic Paris agreement on climate change[EB/OL].(2015-12-13)[2024-06-17]. https://unfccc.int/news/finale-cop21. |
[5] | LIN Q Y, ZHANG X, WANG T, et al. Technical perspective of carbon capture, utilization, and storage[J]. Engineering, 2022, 14: 27-32. |
[6] | CUI Q R, ZHAO R, WANG T K, et al. A 150 000 t·a-1 post-combustion carbon capture and storage demonstration project for coal-fired power plants[J]. Engineering, 2022, 14: 22-26. |
[7] | 温翯, 韩伟, 车春霞, 等. 燃烧后二氧化碳捕集技术与应用进展[J]. 精细化工, 2022, 39(8): 1584-1595. |
WEN He, HAN Wei, CHE Chunxia, et al. Progress of post-combustion carbon dioxide capture technology development and applications[J]. Fine Chemicals, 2022, 39(8): 1584-1595. | |
[8] |
胡长征, 王雅博, 刘圣春. MEA溶液在生物质电厂和燃煤电厂捕集CO2中的应用对比[J]. 综合智慧能源, 2022, 44(6): 78-85.
doi: 10.3969/j.issn.2097-0706.2022.06.009 |
HU Changzheng, WANG Yabo, LIU Shengchun. Application of MEA solution in the CO2 capture in biomass power plants and coal-fired power plants[J]. Integrated Intelligent Energy, 2022, 44(6): 78-85.
doi: 10.3969/j.issn.2097-0706.2022.06.009 |
|
[9] | BUI M, GUNAWAN I, VERHEYEN V, et al. Flexible operation of CSIRO's post-combustion CO2 capture pilot plant at the AGL Loy Yang power station[J]. International Journal of Greenhouse Gas Control, 2016, 48: 188-203. |
[10] | MECHLERI E, LAWAL A, RAMOS A, et al. Process control strategies for flexible operation of post-combustion CO2capture plants[J]. International Journal of Greenhouse Gas Control, 2017, 57: 14-25. |
[11] | MANAF N A, COUSINS A, FERON P, et al. Dynamic modelling, identification and preliminary control analysis of an amine-based post-combustion CO2 capture pilot plant[J]. Journal of Cleaner Production, 2016, 113: 635-653. |
[12] | LAWAL A, WANG M, STEPHENSON P, et al. Dynamic modelling of CO2 absorption for post combustion capture in coal-fired power plants[J]. Fuel, 2009, 88(12): 2455-2462. |
[13] | SCHNEIDER R, KENIG E Y, GÓRAK A. Dynamic modelling of reactive absorption with the Maxwell-Stefan approach[J]. Chemical Engineering Research and Design, 1999, 77(7): 633-638. |
[14] | NOERES C, KENIG E Y, GÓRAK A. Modelling of reactive separation processes: reactive absorption and reactive distillation[J]. Chemical Engineering and Processing:Process Intensification, 2003, 42(3):157-178. |
[15] | SULTAN T, ZABIRI H, SHAHBAZ M, et al. Model analysis for the implementation of a fast model predictive control scheme on the absorption/stripping CO2 capture plants[J]. ACS Omega, 2022, 7: 8437-8455. |
[16] | ZHANG W Z, MA C B, LI H F, et al. DMC-PID cascade control for MEA-based post-combustion CO2 capture process[J]. Chemical Engineering Research and Design, 2022, 182: 701-713. |
[17] | MORES P, SCENNA N, MUSSATI S. Post-combustion CO2 capture process: Equilibrium stage mathematical model of the chemical absorption of CO2 into monoethanolamine (MEA) aqueous solution[J]. Chemical Engineering Research and Design, 2011, 89(9):1587-1599. |
[18] | KENIG E Y, SCHNEIDER R, GORAK A. Rigorous dynamic modelling of complex reactive absorption processes[J]. Chemical Engineering Science, 1999, 54: 5195-5203. |
[19] | LAWAL A, WANG M, STEPHENSON P, et al. Dynamic modelling and analysis of post-combustion CO2 chemical absorption process for coal-fired power plants[J]. Fuel, 2010, 89: 2791-2801. |
[20] | WU X, WANG M L, LIAO P Z, et al. Solvent-based post-combustion CO2 capture for power plants: A critical review and perspective on dynamic modelling, system identification, process control and flexible operation[J]. Applied Energy, 2020, 257(1): 113941. |
[21] | ROBINSON P J, LUYBEN W L. Integrated gasification combined cycle dynamic model: H2S absorption/stripping, water-gas shift reactors, and CO2 absorption/stripping[J]. Industrial & Engineering Chemistry Research, 2010, 49: 4766-4781. |
[22] | NITTAYA T, DOUGLAS P L, CROISET E, et al. Dynamic modelling and evaluation of an industrial-scale CO2 capture plant using monoethanolamine absorption processes[J]. Industrial & Engineering Chemistry Research, 2014, 53: 11411-11426. |
[23] | MEJDELL T, KVAMSDAL H M, HAUGER S O, et al. Demonstration of non-linear model predictive control for optimal flexible operation of a CO2 capture plant[J]. International Journal of Greenhouse Gas Control, 2022, 117: 103645. |
[24] | LIAO P Z, LI Y G, WU X, et al. Flexible operation of large-scale coal-fired power plant integrated with solvent-based post-combustion CO2 capture based on neural network inverse control[J]. International Journal of Greenhouse Gas Control, 2020, 95: 102985. |
[25] | WU X, SHEN J, WANG M L, et al. Intelligent predictive control of large-scale solvent-based CO2 capture plant using artificial neural network and particle swarm optimization[J]. Energy, 2020, 196: 117070. |
[26] | ZHANG W Z, MA C B, LI H F, et al. DMC-PID cascade control for MEA-based post-combustion CO2 capture process[J]. Chemical Engineering Research and Design, 2022, 182: 701-713. |
[27] | 唐炜洁, 沈炯, 吴啸, 等. 化学吸附燃烧后CO2捕集系统前馈优化控制[J]. 工程热物理学报, 2019, 40(9): 1969-1975. |
TANG Weijie, SHEN Jiong, WU Xiao, et al. Feedforward optimization control of post-combustion CO2 capture system[J]. Journal of Engineering Thermophysics, 2019, 40(9): 1969-1975. | |
[28] | 侯忠生, 金尚泰. 无模型自适应控制——理论与应用[M]. 北京: 科学出版社, 2013. |
[29] | IPCC. Intergovernmental panel on climate change (IPCC) special report on carbon dioxide capture and storage[R]. Cambridge, UK: Cambridge University Press, 2005. |
[30] | 李伟斌, 陈健. 乙醇胺溶液吸收 CO2动力学实验研究[J]. 中国科技论文在线, 2009., 4(12):849-854. |
LI Weibin, CHEN Jian. Kinetics of absorption of CO2 into aqueous MEA solutions[J]. Sciencepaper Online, 2009, 4(12):849-854. | |
[31] |
李朋真, 贾冰珂, 刘艳红, 等. 燃烧后二氧化碳捕集系统的改进自抗扰控制[J]. 综合智慧能源, 2023, 45(8):18-25.
doi: 10.3969/j.issn.2097-0706.2023.08.003 |
LI Pengzhen, JIA Bingke, LIU Yanhong, et al. Modified active disturbance rejection control on the post-combustion CO2 capture system[J]. Integrated Intelligent Energy, 2023, 45(8): 18-25.
doi: 10.3969/j.issn.2097-0706.2023.08.003 |
|
[32] | HAN J Q. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3):900-906. |
[33] | GAO Z Q. Scaling and bandwidth-parameterization based controller tuning[C]// Proceedings of the 2003 American Control Conference, Denver, 2003: 4989-4996. |
[34] | HOU Z S, JIN S T. A novel data-driven control approach for a class of discrete-time nonlinear systems[J]. IEEE Transactions on Control Systems Technology, 2011, 19(6): 1549-1558. |
[35] |
李朋真, 刘艳红, 吴振龙. 高比例可再生能源的多区域电力系统负荷频率自抗扰控制[J]. 综合智慧能源, 2022, 44(10): 33-41.
doi: 10.3969/j.issn.2097-0706.2022.10.005 |
LI Pengzhen, LIU Yanhong, WU Zhenlong. Active disturbance rejection control on load frequency of multi-area power systems with high-proportion renewable energy[J]. Integrated Intelligent Energy, 2022, 44(10): 33-41.
doi: 10.3969/j.issn.2097-0706.2022.10.005 |
[1] | LI Pengzhen, JIA Bingke, LIU Yanhong, WU Zhenlong. Modified active disturbance rejection control on the post-combustion CO2 capture system [J]. Integrated Intelligent Energy, 2023, 45(8): 18-25. |
[2] | ZHANG Zhixiong;YANG Ping. Automatic generation control strategy based on control performance standard [J]. Huadian Technology, 2011, 33(3): 38-40. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||