Integrated Intelligent Energy ›› 2025, Vol. 47 ›› Issue (8): 77-88.doi: 10.3969/j.issn.2097-0706.2025.08.009
• Optimized Dispatch of Source-Grid-Load-Storage Systems • Previous Articles
					
													GENG Zhi1( ), JIANG Yuchen1(
), JIANG Yuchen1( ), CHEN Keyu1, LI Yifan1, LI Renfeng1, WANG Xuanxuan2, SUN Qiansheng1
), CHEN Keyu1, LI Yifan1, LI Renfeng1, WANG Xuanxuan2, SUN Qiansheng1
												  
						
						
						
					
				
Received:2024-08-19
															
							
																	Revised:2024-10-10
															
							
															
							
							
																	Published:2024-11-20
															
						Supported by:CLC Number:
GENG Zhi, JIANG Yuchen, CHEN Keyu, LI Yifan, LI Renfeng, WANG Xuanxuan, SUN Qiansheng. Analysis of the characteristics of integrated solar combined cycle under different coupling methods[J]. Integrated Intelligent Energy, 2025, 47(8): 77-88.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2025.08.009
| [1] | 张琦, 田硕硕, 沈佳林. 中国钢铁行业碳达峰碳中和时间表与路线图[J]. 钢铁, 2023, 58(9): 59-68. doi: 10.13228/j.boyuan.issn0449-749x.20230123 | 
| ZHANG Qi, TIAN Shuoshuo, SHEN Jialin. Roadmap and timetable for achieving carbon peak and carbon neutrality of China's iron and steel industry[J]. Iron & Steel, 2023, 58(9): 59-68. | |
| [2] | ZHANG Z X, DUAN L Q, WANG Z, et al. Integration optimization of integrated solar combined cycle(ISCC) system based on system/solar photoelectric efficiency[J]. Energies, 2023,16:3593-3615. | 
| [3] | 施磊, 李孝堂. 中国航改燃气轮机的现状及发展[J]. 航空发动机, 2004, 30(2): 54-58. | 
| SHI Lei, LI Xiaotang. Current status and progress of aeroderivative gas turbines of China[J]. Aeroengine, 2004, 30(2): 54-58. | |
| [4] | TURAN O, AYDIN H. Exergetic and exergo-economic analyses of an aero-derivative gas turbine engine[J]. Energy, 2014, 74: 638-650. | 
| [5] | 苗森. 航机改型燃气轮机的应用与发展[J]. 现代制造技术与装备, 2017, 53(8): 128-129. | 
| MIAO Sen. Application and development of aircraft modified gas turbine[J]. Modern Manufacturing Technology and Equipment, 2017, 53(8): 128-129. | |
| [6] | 刘培军, 李辉全, 张凤梅, 等. 我国航改型燃气轮机发展现状及建议[J]. 燃气轮机技术, 2019, 32(2): 8-13. | 
| LIU Peijun, LI Huiquan, ZHANG Fengmei, et al. Current status and suggestions of China's aero derivative gas turbine development[J]. Gas Turbine Technology, 2019, 32(2): 8-13. | |
| [7] | 陈向阳, 史炜. 航改型燃气轮机在工业园区综合能源系统中的应用探讨[J]. 华电技术, 2019, 41(11): 57-61. | 
| CHEN Xiangyang, SHI Wei. Study of aero-derivative gas turbines applied in industrial park integrated energy systems[J]. Huadian Technology, 2019, 41(11): 57-61. | |
| [8] | MONTES M J, ROVIRA A, MUÑOZ M, et al. Performance analysis of an integrated solar combined cycle using direct steam generation in parabolic trough collectors[J]. Applied Energy, 2011, 88(9): 3228-3238. | 
| [9] | ELMORSY L, MOROSUK T, TSATSARONIS G. Comparative exergoeconomic evaluation of integrated solar combined-cycle(ISCC)configurations[J]. Renewable Energy, 2022, 185: 680-691. | 
| [10] | ELMOHLAWY A E, OCHKOV V F, KAZANDZHAN B I. Study and analysis the performance of two integrated solar combined cycle[J]. Energy Procedia, 2019, 156: 79-84. | 
| [11] | TEMRAZ A, ALOBAID F, LINK J, et al. Development and validation of a dynamic simulation model for an integrated solar combined cycle power plant[J]. Energies, 2021, 14(11):3304. | 
| [12] | ELMOHLAWY A E, OCHKOV V F, KAZANDZHAN B I. Thermal performance analysis of a concentrated solar power system (CSP) integrated with natural gas combined cycle (NGCC) power plant[J]. Case Studies in Thermal Engineering, 2019, 14: 100458. | 
| [13] | BRODRICK P G, BRANDT A R, DURLOFSKY L J. Operational optimization of an integrated solar combined cycle under practical time-dependent constraints[J]. Energy, 2017, 141: 1569-1584. | 
| [14] | ROVIRA A, ABBAS R, SÁNCHEZ C, et al. Proposal and analysis of an integrated solar combined cycle with partial recuperation[J]. Energy, 2020, 198: 117379. | 
| [15] | 张金平, 周强, 王定美, 等. 太阳能光热发电技术及其发展综述[J]. 综合智慧能源, 2023, 45(2): 44-52. doi: 10.3969/j.issn.2097-0706.2023.02.006 | 
| ZHANG Jinping, ZHOU Qiang, WANG Dingmei, et al. Review on solar thermal power generation technologies and their development[J]. Integrated Intelligent Energy, 2023, 45(2): 44-52. doi: 10.3969/j.issn.2097-0706.2023.02.006 | |
| [16] | 吕志鹏. 新型太阳能热互补联合循环发电系统研究[D]. 北京: 华北电力大学, 2018. | 
| LYU Zhipeng. Study on a new solar thermal complementary combined cycle power generation system[D]. Beijing: North China Electric Power University, 2018. | |
| [17] | 王树成, 付忠广, 张高强, 等. 太阳能燃气联合循环系统热经济性研究[J]. 太阳能学报, 2020, 41(4): 86-91. | 
| WANG Shucheng, FU Zhongguang, ZHANG Gaoqiang, et al. Research on thermal economy of solar gas combined cycle system[J]. Acta Energiae Solaris Sinica, 2020, 41(4): 86-91. | |
| [18] | 杨谱, 段立强, 潘盼. ISCC发电系统研究进展[J]. 华电技术, 2020, 42(4): 47-56. | 
| YANG Pu, DUAN Liqiang, PAN Pan. Research progress in ISCC power generation system[J]. Huadian Technology, 2020, 42(4): 47-56. | |
| [19] | 曲万军. 基于燃气-蒸汽联合循环系统的太阳能热互补发电(ISCC)集成特性研究[D]. 北京: 华北电力大学, 2016. | 
| QU Wanjun. Study on the integrated characteristics of solar thermal complementary power generation (ISCC) based on gas-steam combined cycle system[D]. Beijing: North China Electric Power University, 2016. | |
| [20] | 杨丽波, 段立强, 陈彪. 耦合太阳能的燃气轮机动态性能与控制特性研究[J]. 太阳能学报, 2022, 43(12): 134-143. doi: 10.19912/j.0254-0096.tynxb.2021-0739 | 
| YANG Libo, DUAN Liqiang, CHEN Biao. Research on dynamic performance and control characteristics of gas turbine coupled with solar energy[J]. Acta Energiae Solaris Sinica, 2022, 43(12): 134-143. doi: 10.19912/j.0254-0096.tynxb.2021-0739 | |
| [21] | 张楠, 段立强, 丁泽宇, 等. 三种槽式太阳能热互补联合循环发电系统性能分析[J]. 中国电力, 2020, 53(4):169-176. | 
| ZHANG Nan, DUAN Liqiang, DING Zeyu, et al. Performance analysis of three kinds of integrated trough solar energy combined cycle systems[J]. Electric Power, 2020, 53(4): 169-176. | |
| [22] | 杨谱. 太阳能燃气-蒸汽联合循环热互补发电系统建模及优化[D]. 北京: 华北电力大学, 2020. | 
| YANG Pu. Modeling and optimization of solar gas-steam combined cycle thermal complementary power generation system[D]. Beijing: North China Electric Power University, 2020. | |
| [23] | 祖航, 王秋颖. 环境温度及负荷率对燃气-蒸汽联合循环热电联产机组性能的影响[J]. 华电技术, 2019, 41(11): 49-52. | 
| ZU Hang, WANG Qiuying. Effects of ambient temperature and load ratio on performance of gas-steam combined cycle cogeneration units[J]. Huadian Technology, 2019, 41(11): 49-52. | |
| [24] | 闻雪友, 任兰学, 祁龙, 等. 舰船燃气轮机发展现状、方向及关键技术[J]. 推进技术, 2020, 41(11):2401-2407. | 
| WEN Xueyou, REN Lanxue, QI Long, et al. Development and key technologies in marine gas turbine[J]. Journal of Propulsion Technology, 2020, 41(11): 2401-2407. | |
| [25] | 龚光英. 航改工业燃气轮机设计特点分析[J]. 燃气涡轮试验与研究, 2012, 25(S1): 55-60. | 
| GONG Guangying. Design analysis of aero-derivative industrial gas turbines[J]. Gas Turbine Experiment and Research, 2012, 25(S1): 55-60. | |
| [26] | 贺培. 400 kW双轴微型燃气轮机建模与仿真研究[D]. 长沙: 长沙理工大学, 2022. | 
| HE Pei. Research on modeling and simulation of 400 kW twin-shaft micro gas turbine[D]. Changsha: Changsha University of Science & Technology, 2022. | |
| [27] | 高志超. 抛物槽式太阳能集热技术系统集成研究[D]. 北京: 中国科学院研究生院(工程热物理研究所), 2011. | 
| GAO Zhichao. Research on system integration of parabolic trough solar thermal collection technology[D]. Beijing: Institute of Engineering Thermophysics,Graduate University of Chinese Academy of Sciences, 2011. | |
| [28] | PETELA R. Exergy of undiluted thermal radiation[J]. Solar Energy, 2003, 74(6): 469-488. | 
| [29] | 张祖贤. 太阳能热互补联合循环系统集成机理与全工况特性[D]. 北京: 华北电力大学, 2023. | 
| ZHANG Zuxian. Integration mechanism and full-condition characteristics of solar thermal complementary combined cycle system[D]. Beijing: North China Electric Power University, 2023. | |
| [30] | 耿直, 陈柯宇, 刘媛媛, 等. 太阳能与燃气-蒸汽联合循环互补性能分析[J]. 综合智慧能源, 2023, 45(12):79-86. doi: 10.3969/j.issn.2097-0706.2023.12.010 | 
| GENG Zhi, CHEN Keyu, LIU Yuanyuan, et al. Complementarity analysis of solar energy and gas turbine combined cycle[J]. Integrated Intelligent Energy, 2023, 45(12): 79-86. doi: 10.3969/j.issn.2097-0706.2023.12.010 | 
| [1] | GENG Zhi, CHEN Keyu, LIU Yuanyuan, ZHANG Bin, WANG Jianli, SHI Tianqing, LI Fang, GU Yujiong. Complementarity analysis of solar energy and gas turbine combined cycle [J]. Integrated Intelligent Energy, 2023, 45(12): 79-86. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||

