Integrated Intelligent Energy ›› 2025, Vol. 47 ›› Issue (11): 96-105.doi: 10.3969/j.issn.2097-0706.2025.11.009
• Power Data Security • Previous Articles
LI Zhuoqun1(
), JIN Yuan1(
), PENG Fengwei2(
), ZHANG Xiangyu2(
), DAI Hanqi1(
), ZHANG Xian1(
), YUAN Xiaoxi1, GONG Gangjun2,*(
)
Received:2025-02-18
Revised:2025-04-15
Published:2025-04-28
Contact:
GONG Gangjun
E-mail:lizhuoqun0809@126.com;18600105056@163.com;2567745437@qq.com;zz15805236101@163.com;daihanqi@bj.sgcc.com.cn;zhangxian@bj.sgcc.com.cn;gong@ncepu.edu.cn
Supported by:CLC Number:
LI Zhuoqun, JIN Yuan, PENG Fengwei, ZHANG Xiangyu, DAI Hanqi, ZHANG Xian, YUAN Xiaoxi, GONG Gangjun. Research on cybersecurity challenges and protection of charging piles in digital and intelligent power grids[J]. Integrated Intelligent Energy, 2025, 47(11): 96-105.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2025.11.009
Table 1
Advantages and disadvantages of communication protocol vulnerability mining methods
| 方法类型 | 优点 | 缺点 | 针对协议 | 关键技术 | 典型研究 |
|---|---|---|---|---|---|
| 基于突变的 模糊测试 | 无需详细协议规范;通过现有输入变异快速生成用例;状态空间遍历能力强 | 依赖随机变异策略;冗余用例多、资源浪费;深层缺陷探测困难 | Modbus,ICS协议 | 信息熵引导个性化突变;BERT无监督聚类;AFL改进框架 | 文献[37-38] |
| 基于生成的 模糊测试 | 符合协议规范;覆盖协议多层级结构;测试用例多样性高 | 需要协议结构知识;逆向分析成本高;复杂协议生成难度大 | CAN总线,工业控制协议 | 协议逆向分析(Pro Cluster);Transformer自注意力机制;动态多尺度判别器 | 文献[39-40] |
| 基于状态导向的模糊测试 | 精准触发协议状态转移;提升代码覆盖率;支持复杂交互场景验证 | 状态机建模复杂度高;多节点同步测试难度大;依赖协议状态可见性 | X.509,TLS,有状态协议 | 灰盒状态追踪技术;差分测试算法;状态转移优先级 排序 | 文献[41] |
Table 2
Advantages and disadvantages of vulnerability mining methods for operating system
| 方法类型 | 优点 | 缺点 | 核心能力 | 典型研究 | 适用场景 |
|---|---|---|---|---|---|
| 人工走查 | 发现漏洞深度高;可识别复杂逻辑缺陷 | 耗时耗力;依赖人员技术水平;代码量大时不现实 | 深度代码审查;逻辑漏洞挖掘 | 通用人工 审查 | 小型项目;关键模块深度审查 |
| 工具静扫描分析 | 漏报率低;无需运行程序;支持自动化检测 | 误报率高;依赖规则库更新;无法检测运行时漏洞 | 静态数据流/控制流分析;代码结构可视化 | 文献[42-43] | 代码开发早期阶段;资源受限环境 |
| 动态测试 分析 | 误报率低;真实运行环境检测;可捕捉运行时漏洞 | 漏报率高;依赖测试用例质量;代码覆盖率有限 | 运行时行为监控;输入/输出关系验证 | 文献[44] | 工控设备漏洞挖掘;模糊测试场景 |
| 动静态结合测试分析 | 兼顾深度与效率;覆盖多种漏洞类型;检测准确性高 | 技术实现复杂;工具整合成本高;依赖静态规则与动态数据协同 | 多维度漏洞预测;固件已知漏洞挖掘 | 文献[45-46] | 复杂固件安全评估;多类型漏洞联合检测 |
| [1] | 刘斌, 孙周, 姜之未, 等. 数字化赋能交通能源融合: 技术路径、应用场景与未来展望[J]. 综合智慧能源, 2025, 47(2): 1-12. |
| LIU Bin, SUN Zhou, JIANG Zhiwei, et al. Digital empowerment of transport-energy integration:Technological pathways, application scenarios and future prospects[J]. Integrated Intelligent Energy, 2025, 47(2): 1-12. | |
| [2] | 刘涛, 李伟华, 汤熠. 综合智慧能源系统典型构架网络安全防护研究[J]. 综合智慧能源, 2024, 46(5): 81-90. |
| LIU Tao, LI Weihua, TANG Yi. Security protection of typical networks for integrated smart energy systems[J]. Integrated Intelligent Energy, 2024, 46(5): 81-90. | |
| [3] | 娄奇鹤, 李彦斌, 王登政, 等. 现代智慧配电网发展方向与关键技术框架[J/OL]. 电力建设,1-18( 2024-11-28)[2025-02-15].http://kns.cnki.net/kcms/detail/11.2583.TM.20241128.1056.002.html. |
| LOU Qihe, LI Yanbin, WANG Dengzheng, et al. Framework on development direction and key technology of modern smart distribution network[J/OL]. Electric Power Construction, 1-18( 2024-11-28)[2025-02-15].http://kns.cnki.net/kcms/detail/11.2583.TM.20241128.1056.002.html. | |
| [4] | 国务院办公厅. 关于进一步构建高质量充电基础设施体系的指导意见[EB/OL].( 2023-06-19)[2025-02-15]. https://www.gov.cn/zhengce/content/202306/content_6887167.htm. |
| [5] | 中国电动汽车充电基础设施促进联盟. 中国电动汽车充换电基础设施产业发展报告(2024)[M]. 北京: 中国标准出版社, 2025. |
| [6] | 黄涛, 王郅伟, 刘家池, 等. 工控协议安全研究综述[J]. 通信学报, 2024, 45(6): 60-74. |
| HUANG Tao, WANG Zhiwei, LIU Jiachi, et al. Survey on industrial control protocol security research[J]. Journal on Communications, 2024, 45(6): 60-74. | |
| [7] | 温杰. 基于Linux系统的嵌入式设备漏洞自动化检测技术研究[D]. 西安: 西安电子科技大学, 2022. |
| WEN Jie. Research on automatic vulnerability detection technology of embedded device based on linux system[D]. Xi'an: Xidian University, 2022. | |
| [8] | 肖芫莹, 游耀东, 向黎希. 代码审计系统的误报率成因和优化[J]. 电信科学, 2020, 36(12): 155-162. |
| XIAO Yuanying, YOU Yaodong, XIANG Lixi. Causes and optimization of the false alarm rate of code review system[J]. Telecommunications Science, 2020, 36(12): 155-162. | |
| [9] | 康海燕, 张聪明. 基于联邦学习的自适应网络攻击分析方法研究[J]. 信息安全研究, 2024, 10(12): 1091-1099. |
| KANG Haiyan, ZHANG Congming. An adaptive network attack analysis method based on federated learning[J]. Journal of Information Security Research, 2024, 10(12): 1091-1099. | |
| [10] | PANG S L, WANG J, LI Z, et al. Study on the corrosion failure mechanism and protective materials of AC charging piles in tropical island environment[J]. Journal of Physics: Conference Series, 2025, 2941(1): 012015. |
| [11] | 邢汇笛, 龚钢军, 翟明岳, 等. 电力数据共享安全防护与隐私保护综述[J]. 综合智慧能源, 2024, 46(5): 30-40. |
| XING Huidi, GONG Gangjun, ZHAI Mingyue, et al. Research on security and privacy protection of electric power data sharing[J]. Integrated Intelligent Energy, 2024, 46(5): 30-40. | |
| [12] | 张永新, 闫鹏领, 朱国栋. 电动汽车充电站站网互动运行优化技术研究与实践[J]. 综合智慧能源, 2022, 44(6): 45-51. |
| ZHANG Yongxin, YAN Pengling, ZHU Guodong. Research and practice on the EV station‑to‑grid interactive operation optimization technology[J]. Integrated Intelligent Energy, 2022, 44(6): 45-51. | |
| [13] | 李惠军, 陆建强, 周霞, 等. 面向智慧园区系统的网络攻击关联分析与防护策略研究[J]. 综合智慧能源, 2022, 44(7): 1-9. |
| LI Huijun, LU Jianqiang, ZHOU Xia, et al. Network attack association analysis and attack protection strategy for smart park systems[J]. Integrated Intelligent Energy, 2022, 44(7): 1-9. | |
| [14] | 龚钢军, 王路遥, 常卓越, 等. 基于能源枢纽的综合能源信息物理系统安全防护架构研究[J]. 综合智慧能源, 2024, 46(5): 65-72. |
| GONG Gangjun, WANG Luyao, CHANG Zhuoyue, et al. Security protection for integrated energy cyber physical systems based on energy hubs[J]. Integrated Intelligent Energy, 2024, 46(5): 65-72. | |
| [15] | HAN Y X, REN M Z, MA Q L, et al. Research on the fault diagnosis method of automotive charging pile based on the improved MLP with SAE[J]. Journal of Electrical Engineering & Technology, 2025, 20(3): 1333-1345. |
| [16] | LIU Z M, LIANG X N, LI L W, et al. Research on sustainable design of smart charging pile based on machine learning[J]. Symmetry, 2024, 16(12): 1582. |
| [17] | LI S W, LI J J. Research on the contribution of technological innovation efficiency and internal structure optimization of charging pile industry: A case study of China[J]. Economic Analysis and Policy, 2024, 84: 1636-1651. |
| [18] | WANG J Q, YANG S Q, LIU Y K, et al. Design of thermal management system for high‑power liquid‑cooled charging pile[J]. Journal of Physics: Conference Series, 2024, 2896(1): 012007. |
| [19] | SHI Y F, XU Y, YU N T, et al. Analysis of the current development status of new energy vehicle charging piles in Beijing based on data mining[J]. Economic Society and Humanities, 2024, 1(10): 71-79. |
| [20] | CHEN Y F, SU Y Z, WU Z X, et al. A survey on the development status and trends of new energy vehicle charging piles in Beijing: A data mining‑based analysis[J]. Industry Science and Engineering, 2024, 1(9): 49-58. |
| [21] | 高胜国, 李云祥, 邢冬雪, 等. 电动汽车充电系统安全防护研究[J]. 工程建设与设计, 2020(2): 121-122. |
| GAO Shengguo, LI Yunxiang, XING Dongxue, et al. Research on safety protection of charging system of electric vehicle[J]. Construction & Design for Engineering, 2020(2): 121-122. | |
| [22] | LI Y J. Humanistic expression and technological innovation in the design of new energy charging piles[J]. Research and Commentary on Humanities and Arts, 2024, 2(8):20-22. |
| [23] | XU C, LIU C, ZHANG J, et al. Research on the development status and problems of third‑party platform and operator of charging pile[J]. Frontiers in Economics and Management, 2024, 5(7): 51-59. |
| [24] | YU L S, GE X H. Time‑series prediction of electricity load for charging piles in a region of China based on broad learning system[J]. Mathematics, 2024, 12(13): 2147. |
| [25] | LUO W, SHEN L. Design and research of an automatic charging system for electric vehicles[C]// Proceedings of 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2020: 1832-1836. |
| [26] | 叶琼瑜, 任悦, 陈政熙. 电动汽车和充电桩间通信网络的信息安全研究[J]. 集成电路应用, 2022, 39(5): 9-13. |
| YE Qiongyu, REN Yue, CHEN Zhengxi. Study on information security of communication network between electric vehicles and charging pile[J]. Application of IC, 2022, 39(5): 9-13. | |
| [27] | DUAN Y J, SHU S, ZHAO Y G, et al. Machine learning‑based spatiotemporal fusion method for non‑intrusive charging pile fault identification[J]. Frontiers in Electronics, 2024, 5 :1490939. |
| [28] | XIE J, LU Y, YE Q, et al.Research on information interaction mechanism of plug‑and‑play of battery energy storage system[C]//Proceedings of 8th Renewable Power Generation Conference (RPG 2019). London: IET, 2019: 1-9. |
| [29] | GAN X Y, ZHANG H X, HANG G, et al. Fast‑charging station deployment considering elastic demand[J]. IEEE Transactions on Transportation Electrification, 2020, 6(1): 158-169. |
| [30] | 叶琼瑜, 张倩, 忻奕敏. 工业互联网环境下的充电桩信息安全需求研究[J]. 自动化仪表, 2022, 43(5): 102-105. |
| YE Qiongyu, ZHANG Qian, XIN Yimin. Research on cyber security requirements of charging station for vehicles[J]. Process Automation Instrumentation, 2022, 43(5): 102-105. | |
| [31] | 高辉, 彭成薇, 李炜卓, 等. 电动汽车与充电设备充电安全预警研究综述[J]. 电力系统自动化, 2024, 48(7): 47-61. |
| GAO Hui, PENG Chengwei, LI Weizhuo, et al. Review on early warning of charging safety for electric vehicles and charging equipment[J]. Automation of Electric Power Systems, 2024, 48(7): 47-61. | |
| [32] | 谢远德, 张邻, 邓沙丽, 等. 电动汽车充电设施优化网络布局研究[J]. 数学的实践与认识, 2020, 50(10): 168-176. |
| XIE Yuande, ZHANG Lin, DENG Shali, et al. Research on optimized network layout of electric vehicle charging facilities[J]. Mathematics in Practice and Theory, 2020, 50(10): 168-176. | |
| [33] | XU L Y, LI H Y, DONG F F, et al. Assessment of data flow control methods and their performance on IEC61850 based digital substation[C]// Proceedings of 2019 IEEE 8th International Conference on Advanced Power System Automation and Protection (APAP). IEEE, 2019: 1408-1412. |
| [34] | JIANG Y R, LIU Q, WU H. Scheduling strategy of real‑time charging optimization of electric vehicles based on deep learning[J]. Journal of Physics: Conference Series, 2021, 1992(4): 042025. |
| [35] | 徐江珮, 王晋, 刘畅, 等. 电动汽车充电桩CAN总线协议的安全检测[J]. 山东大学学报(理学版), 2020, 55(5): 95-104. |
| XU Jiangpei, WANG Jin, LIU Chang, et al. Security detection of CAN bus protocol for electric vehicle and charging pile[J]. Journal of Shandong University (Natural Science), 2020, 55(5): 95-104. | |
| [36] | GUO F, WANG Y W, DENG G R, et al. Research and analysis on the use of 5G and big data in urban electric vehicle public charging networks[J]. Journal of Physics: Conference Series, 2021, 1744(2): 022136. |
| [37] | WANYAN H X, LAI Y X, LIU J, et al. NCMFuzzer: Using non‑critical field mutation and test case combination to improve the efficiency of ICS protocol fuzzing[J]. Computers & Security, 2024, 141: 103811. |
| [38] | 刘智远. 基于模糊测试的未知协议漏洞挖掘方法研究[D]. 成都: 电子科技大学, 2021. |
| LIU Zhiyuan. Research on unknown protocol vulnerability mining method based on fuzz testing[D]. Chengdu: University of Electronic Science and Technology of China, 2021. | |
| [39] | 刘华玉, 甘水滔, 尹小康, 等. 一种基于协议格式智能推断的灰盒测试技术[J]. 计算机工程, 2023, 49(12): 129-135, 145. |
| LIU Huayu, GAN Shuitao, YIN Xiaokang, et al. A gray‑box test technology based on intelligent inference of protocol format[J]. Computer Engineering, 2023, 49(12): 129-135, 145. | |
| [40] | 连莲, 孙世明, 王国刚, 等. 基于多尺度潜在特征表示的工业控制协议模糊测试方法[J]. 计算机应用研究, 2025, 42(2): 545-554. |
| LIAN Lian, SUN Shiming, WANG Guogang, et al. Industrial control protocols fuzz testing method based on multi‑scale latent feature representation[J]. Application Research of Computers, 2025, 42(2): 545-554. | |
| [41] | 黄一乘. 有状态协议实现的灰盒模糊测试方法研究[D]. 杭州: 杭州电子科技大学, 2023. |
| Huang Yicheng. Research on gray box fuzzy testingmethod for stateful protocol implementation[D]. Hangzhou: Hangzhou Dianzi University, 2023. | |
| [42] | 张志慧, 张利桃. 嵌入式多任务操作下可信软件的漏洞挖掘方法[J]. 计算机仿真, 2024, 41(8): 486-490. |
| ZHANG Zhihui, ZHANG Litao. A vulnerability mining method for trusted software under embedded multitasking operations[J]. Computer Simulation, 2024, 41(8): 486-490. | |
| [43] | 刘翎翔, 潘祖烈, 李阳, 等. 基于前后端关联性分析的固件漏洞静态定位方法[J]. 信息网络安全, 2022, 22(8): 44-54. |
| LIU Lingxiang, PAN Zulie, LI Yang, et al. Firmware vulnerability static localization method based on front‑end and back‑end correlation analysis[J]. Netinfo Security, 2022, 22(8): 44-54. | |
| [44] | 段斌, 李兰, 赖俊, 等. 基于动态污点分析的工控设备硬件漏洞挖掘方法研究[J]. 信息网络安全, 2019, 19(4): 47-54. |
| DUAN Bin, LI Lan, LAI Jun, et al. Research on hardware vulnerabilities mining method for industrial control device based on dynamic taint analysis[J]. Netinfo Security, 2019, 19(4): 47-54. | |
| [45] | QIN C, PENG J Q, LIU P Z, et al. UCRF: Static analyzing firmware to generate under‑constrained seed for fuzzing SOHO router[J]. Computers & Security, 2023, 128: 103157. |
| [46] | 王鑫. 面向固件漏洞的动静态结合检测技术研究[D]. 赣州: 江西理工大学, 2023. |
| WANG Xin. Research on dynamic and static detection technology for firmware vulnerability[D]. Ganzhou: Jiangxi University of Science and Technology, 2023. | |
| [47] | 杨喆, 邓华, 刘杰. 基于超轻节点区块链的共享充电桩信息安全机制研究[J]. 电子设计工程, 2024, 32(13): 108-112. |
| YANG Zhe, DENG Hua, LIU Jie. Research on information security mechanism of shared charge point based on ultra light node blockchain[J]. Electronic Design Engineering, 2024, 32(13): 108-112. | |
| [48] | 李翟严, 胡耀杰, 徐礼富, 等. 基于反向学习的状态空间模型进化算法的充电桩故障诊断预测研究[J]. 机械设计, 2024, 41(S1): 192-195. |
| LI Zhaiyan, HU Yaojie, XU Lifu, et al. Research on fault diagnosis and prediction of charging pile based on inverse learning state space model evolutionary algorithm[J]. Journal of Machine Design, 2024, 41(S1): 192-195. | |
| [49] | 于东民, 杨超, 蒋林洳, 等. 电动汽车充电安全防护研究综述[J]. 中国电机工程学报, 2022, 42(6): 2145-2164. |
| YU Dongmin, YANG Chao, JIANG Linru, et al. Review on safety protection of electric vehicle charging[J]. Proceedings of the CSEE, 2022, 42(6): 2145-2164. | |
| [50] | 黄建钟, 刘卫新, 杨静, 等. 一种基于深度学习的充电桩网络异常检测模型[J]. 微型电脑应用, 2024, 40(6): 1-4. |
| HUANG Jianzhong, LIU Weixin, YANG Jing, et al. An anomaly detection model of charging pile network based on deep learning[J]. Microcomputer Applications, 2024, 40(6): 1-4. | |
| [51] | 黄学良, 刘永东, 沈斐, 等. 电动汽车与电网互动:综述与展望[J]. 电力系统自动化, 2024, 48(7): 3-23. |
| HUANG Xueliang, LIU Yongdong, SHEN Fei, et al. Vehicle to grid: Review and prospect[J]. Automation of Electric Power Systems, 2024, 48(7): 3-23. | |
| [52] | WANG J, WANG H Q, WANG C G. Optimal charging pile configuration and charging scheduling for electric bus routes considering the impact of ambient temperature on charging power[J]. Sustainability, 2023, 15(9): 7375. |
| [53] | WANG W, WANG J H, PENG X F, et al. Exploring best matched embedding model and classifier for charging pile fault diagnosis[J]. Cybersecurity, 2023, 6(1): 7. |
| [54] | DING X F, SHI H J, WANG Y J, et al. Research on harmonic management of single‑phase AC charging pile based on active filtering[J]. Energies, 2023, 16(6): 2817. |
| [55] | HU C X, LI J S, CHEN H H, et al. Research on interactive experience design of tram charging pile based on user perspective: Taking Quanzhou Normal University as an example[J]. The Frontiers of Society, Science and Technology, 2023, 5(2): 1-8. |
| [56] | YANG L T, GAO H, DUAN H W. Research on intelligent diagnosis method of electric vehicle charging fault based on artificial intelligence expert system[J]. Journal of Physics: Conference Series, 2021, 1848(1): 012125. |
| [1] | ZHAI Shuo, ZHANG Zhiyuan, WANG Weisheng, TIAN Runduo, ZHANG Weizhi, WANG Rui. Vehicle-vehicle energy mutual aid control strategy for electric vehicles [J]. Integrated Intelligent Energy, 2025, 47(8): 40-48. |
| [2] | YU Sheng, ZHOU Xia, SHEN Xicheng, DAI Jianfeng, LIU Zengji. Risk analysis on the source-grid-load-storage system affected by cyber attacks [J]. Integrated Intelligent Energy, 2024, 46(5): 41-49. |
| [3] | HU Chao, PENG Wenhe, FANG Zhijian. Hierarchical optimization scheduling for electric vehicles with PV-power storage charging stations [J]. Integrated Intelligent Energy, 2023, 45(9): 11-17. |
| [4] | LIU Jian, LIU Yuxin, ZHUANG Hanyu. Key technologies and construction practices of virtual power plants [J]. Integrated Intelligent Energy, 2023, 45(6): 59-65. |
| [5] | SHEN Rongrong, JIANG Feng, WEI Zequan, LIU Shimin, QI Ze. Comprehensive benefit evaluation for Energy Internet park projects based on combined weight of game [J]. Integrated Intelligent Energy, 2023, 45(11): 70-81. |
| [6] | LI Huijun, LU Jianqiang, ZHOU Xia, XIE Xiangpeng, WAN Lei. Network attack association analysis and attack protection strategy for smart park systems [J]. Integrated Intelligent Energy, 2022, 44(7): 1-9. |
| [7] | BAI Jiahao, FU Xueqian. Review on electric energy substitution of agricultural energy internet in the context of carbon neutrality [J]. Integrated Intelligent Energy, 2022, 44(6): 1-11. |
| [8] | LIU Zifa, TAN Yazhi, LI Jiong, FAN Jingyi, ZHOU Hanze. Review on key points in the planning for a district-level integrated energy system [J]. Integrated Intelligent Energy, 2022, 44(6): 12-24. |
| [9] | ZHONG Yongjie, JI Ling, LI Jingxia, JIANG Yanjun, WU Shiwei, WANG Zidong. Overview on the characteristics,connotation and development status of virtual power plants in China [J]. Integrated Intelligent Energy, 2022, 44(6): 25-36. |
| [10] | GUAN Xin, CHEN Tao, GAO Ciwei. Study on optimal operation of the demand-side energy storage system for wind power participating in electricity market [J]. Integrated Intelligent Energy, 2022, 44(2): 35-41. |
| [11] | ZHANG Kaijie, DING Guofeng, WEN Ming, HUI Hongxun, DING Yi, HE Min, CHU Jiefeng, XIE Kang, YU Chutian, ZHANG Lijun. Review of optimal dispatching technology and market mechanism design for virtual power plants [J]. Integrated Intelligent Energy, 2022, 44(2): 60-72. |
| [12] | HOU Luyang, GE Leijiao, WANG Biao, WANG Xuanyuan, XU Lianming, WANG Li. Research on the integrated energy system and the electricity market towards new prosumers [J]. Integrated Intelligent Energy, 2022, 44(12): 40-48. |
| [13] | YU Li, XU Jingjing, MA Lanfang, WANG Youtian. Case study on the integrated energy service project with newly installed heat pumps [J]. Integrated Intelligent Energy, 2022, 44(1): 72-79. |
| [14] | QIN Yufei, GE Leijiao, WANG Bo. Swarm intelligence collaborative control and optimization technology of Energy Internet [J]. Huadian Technology, 2021, 43(9): 1-13. |
| [15] | LIU Huiqiang, MU Teng, XING Huadong, WU Haiyan, LIU Jianqiang, LEI Ke, GUO Qi. Research on PV power grid connection stability based on decoupled active disturbance rejection control [J]. Huadian Technology, 2021, 43(8): 11-19. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||

