Integrated Intelligent Energy ›› 2021, Vol. 43 ›› Issue (12): 66-71.doi: 10.3969/j.issn.1674-1951.2021.12.010
• New Energy • Previous Articles Next Articles
ZHANG Jun(), SU Yang, LI Yong, CONG Xingliang
Received:
2021-09-15
Revised:
2021-11-15
Published:
2021-12-25
CLC Number:
ZHANG Jun, SU Yang, LI Yong, CONG Xingliang. Numerical study on the flow control of vortex generators on large wind turbine blades[J]. Integrated Intelligent Energy, 2021, 43(12): 66-71.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.1674-1951.2021.12.010
Tab.1
Grid independence verification
项目 | 网格数/万 | 升力系数 | 阻力系数 | |
---|---|---|---|---|
1.02°攻角S809翼型涡流发生器计算结果 | S809翼型 | 100.4 | 0.243 5 | 0.014 3 |
131.8 | 0.244 3 | 0.014 8 | ||
160.3 | 0.244 0 | 0.014 7 | ||
S809翼型加涡流发生器 | 200.1 | 0.255 6 | 0.014 5 | |
245.9 | 0.256 8 | 0.015 1 | ||
290.4 | 0.256 3 | 0.014 8 | ||
4°攻角某1.5 MW风力机翼型涡流发生器计算结果 | 某1.5 MW风力机翼型 | 101.5 | 0.722 3 | 0.023 5 |
132.6 | 0.721 2 | 0.023 1 | ||
165.2 | 0.722 8 | 0.023 7 | ||
某1.5 MW风力机翼型加涡流发生器 | 203.4 | 0.734 1 | 0.025 2 | |
252.4 | 0.732 8 | 0.024 6 | ||
307.8 | 0.733 6 | 0.024 9 |
[1] | MANWELL J F, MCGOWAN J G, ROGERS A L. Wind energy explained:Theory,design and application[M]. London:John Wiley & Sons, 2010. |
[2] | TOLLMIEN W, SCHLICHTING H, GÖRTLER H, et al. Über Flüssigkeitsbewegung bei sehr kleiner Reibung[M]. Berlin:Springer Verlag, 1961. |
[3] | KRAL L D. Active flow control technology[J]. Active Flow Control Technology, 2000:1-28. |
[4] | 黄红波, 陆芳. 涡流发生器应用发展进展[J]. 武汉理工大学学报(交通科学与工程版), 2011, 35(3):611-614. |
HUANG Hongbo, LU Fang. Research progress of vortex generator application[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2011, 35(3):611-614. | |
[5] | MILLER G E. Comparative performance tests on the Mod-2,2.5-MW wind turbine with and without vortex generators [C]//DOE/NASA Workshop on Horizontal Axis Wind Turbine Technology, 1995. |
[6] | GYATT G W. Development and testing of vortex generators for small horizontal axis wind turbines[R]. Monrovia:Aerovironment Incorporated, 1986. |
[7] | SULLIVAN T L. Effect of vortex generators on the power conversion performance and structural dynamic loads of the Mod-2 wind turbine[R]. National Aeronautics and Space Administration Lewis Research Center, 1984. |
[8] | HUBBARD H H, SHEPHERD K P. The effects of blade mounted vortex generators on the noise from a Mod-2 wind turbine generator[R]. National Aeronautics and Space Administration, 1984. |
[9] | LINSCOTT B S, DENNETT J T, GORDON L H. The Mod-2 wind turbine development project[R]. U.S.Department of Energy, 1981. |
[10] | BLISSELL J W A. Use of blade pitch control to provide power train damping for the Mod-2,2.5-MW wind turbine[J]. Wind Turbine Technology, 1995, 1:175-190. |
[11] | NYLAND T W. Surface pressure measurements on the blade of an operating Mod-2 wind turbine with and without vortex generators[R]. National Aeronautics and Space Administration Lewis Research Center, 1987. |
[12] | 张磊, 杨科, 徐建中. 涡流发生器对风力机专用翼型气动特性的影响[J]. 工程热物理学报, 2010, 31(5):749-752. |
ZHANG Lei, YANG Ke, XU Jianzhong. Effects on wind turbine airfoils by vortex generators[J]. Journal of Engineering Thermophysics, 2010, 31(5):749-752. | |
[13] | 焦建东. 加装涡流发生器风力机叶片的气动性能研究[D]. 北京:华北电力大学, 2014. |
[14] | 赵振宙, 孟令玉, 王同光, 等. 涡流发生器对风力机翼段动态失速影响[J]. 哈尔滨工程大学学报, 2021, 42(2):233-239. |
ZHAO Zhenzhou, MENG Lingyu, WANG Tongguang, et al. Influence of vortex generators on dynamic stall of wind turbine airfoil segment[J]. Journal of Harbin Engineering University, 2021, 42(2):233-239. | |
[15] | 高超, 贾娅娅, 刘庆宽, 等. 涡流发生器对风力机叶片薄翼型气动性能影响的试验研究[J]. 太阳能学报, 2021, 42(5):364-372. |
GAO Chao, JIA Yaya, LIU Qingkuan, et al. Experimental investigation of effect of vortex generators parameter on aerodynamic performance of thin airfoil[J]. Acta Energiae Solaris Sineca, 2021, 42(5):364-372. | |
[16] | 戴丽萍, 许雅苹, 周强, 等. 涡发生器对风力机翼型动态失速的影响[J]. 工程热物理学报, 2018, 39(8):1706-1712. |
DAI Liping, XU Yaping, ZHOU Qiang, et al. Effects of vortex generators on wind turbine airfoil in dynamicstall[J]. Journal of Engineering Thermophysics, 2018, 39(8):1706-1712. | |
[17] |
STANDISH K J, VAN D C P. Aerodynamic analysis of blunt trailing edge airfoils[J]. Journal of Solar Energy Engineering, 2003, 125(4):479-487.
doi: 10.1115/1.1629103 |
[18] | SMERS D M. Design and experimental results for the S809 airfoil[R]. National Renewable Energy Laboratory, 1997. |
[19] | 白昊, 张健, 郭欣维, 等. 煤粉锅炉中空气分级与烟气循环协同调控脱硝的数值模拟研究[J]. 华电技术, 2020, 42(9):9-15. |
BAI Hao, ZHANG Jian, GUO Xinwei, et al. Numerical simulation for synergistic control on denitration in the pulverized coal boiler with air staging and flue gas circulation[J]. Huadian Technology, 2020, 42(9):9-15. |
[1] | CUI Shuangshuang, SUN Shanxun. Study on the correlation of wind turbine variables under different conditions [J]. Integrated Intelligent Energy, 2022, 44(12): 49-55. |
[2] | FAN Daqian, LIU Bosong, GUO Peng. Wind turbine blades icing detection with multi-parameter models based on AdaBoost algorithm [J]. Huadian Technology, 2021, 43(8): 20-26. |
[3] | YANG Mingming. Wind speed correction for wind turbine based on convolutional neural network [J]. Huadian Technology, 2021, 43(5): 75-79. |
[4] | CUI Kaiping,HAN Wei,NI Yu,HAN Zhenxing,Francisco MANGAS. Research on thermal stratification and control process in molten salt storage tanks [J]. Huadian Technology, 2020, 42(5): 8-13. |
[5] | CAO Li,PAN Qiaobo,WANG Mingyu,MA Dong. Early warning method for wind turbine generator temperature based on HK-SVM [J]. Huadian Technology, 2020, 42(5): 43-49. |
[6] | YANG Mingming. Research on wind turbine power curve based on Nacelle Transfer Function [J]. Huadian Technology, 2020, 42(5): 50-54. |
[7] | JIANG Yin,REN Hongwei,CHEN Kai,ZHU Changjiang. Self-detecting method for faults in wind turbine controller I/O hardware based on BP neural network algorithm [J]. Huadian Technology, 2020, 42(5): 55-60. |
[8] | ZHANG Fufeng1,LIU Daokuan2,QU Baozhong2,YU Ziyan1,WU Kai2,MA Shuangchen2. Status and progress of numerical simulation in flue gas evaporation technology for desulfurization wastewater #br# [J]. Huadian Technology, 2020, 42(3): 8-18. |
[9] | LI Xinkai,LIU Wei,ZHANG Tingjun,WANG Peiming,ZHAO Jian,SUN Manjie. Study on wind turbine blade protection against lightening applied in comprehensive energy [J]. Huadian Technology, 2020, 42(2): 63-67. |
[10] | YU Shilin, JIN Limei, TAN Houzhang, ZHANG Gaoxiong, REN Qiaoli. Exploration on causes of SCR catalyst wear and the optimization scheme [J]. Huadian Technology, 2020, 42(12): 7-13. |
[11] | WANG Daoxin, CAI Chuangbin, WANG Jinhe. Quantitative analysis on representative influencing factors of wind measurement mast based on power generation [J]. Huadian Technology, 2020, 42(12): 72-77. |
[12] |
XIE Jiaying,GUO Peng.
Deep neural network modeling on power curve based on multivariable selection |
[13] |
Analysis and research on static deviation of the yaw system of wind turbines.
Analysis and research on static deviation of the yaw system of wind turbines |
[14] |
HU Xiangtao,ZHANG Jinlei,XIANG Zongyuan.
Derating and efficiency optimization operation of wind turbines running above cutout wind speed |
[15] |
LIU Peiqi,LIU Xiaomeng,ZHU Yue.
Application research of air staging technology based on CFD
[J]. Huadian Technology, 2019, 41(1): 32-35.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||