Integrated Intelligent Energy ›› 2022, Vol. 44 ›› Issue (12): 49-55.doi: 10.3969/j.issn.2097-0706.2022.12.007
• Integrated Energy System • Previous Articles Next Articles
CUI Shuangshuang(), SUN Shanxun*(
)
Received:
2022-09-30
Revised:
2022-10-10
Published:
2022-12-25
Contact:
SUN Shanxun
E-mail:1830564619@qq.com;sunshanxun@jnu.edu.cn
CLC Number:
CUI Shuangshuang, SUN Shanxun. Study on the correlation of wind turbine variables under different conditions[J]. Integrated Intelligent Energy, 2022, 44(12): 49-55.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2022.12.007
Table 1
Correlation coefficients between different state variables and active power
状态参数 | 相关系数 | ||
---|---|---|---|
Pearson系数 | Spearman系数 | Copula熵 | |
风速 | 0.964 072 | 0.987 202 | 0.994 263 |
风速差分 | 0.163 991 | 0.203 150 | -0.080 865 |
轴箱温度 | 0.590 713 | 0.520 675 | 0.118 063 |
发电机绕组温度 | 0.962 151 | 0.946 291 | 1.152 315 |
桨叶角度 | 0.155 169 | 0.487 964 | -0.088 160 |
扭缆角度 | -0.245 722 | -0.287 857 | -0.064 423 |
Table 2
Copula entropy of each state variable and the active power of the wind turbine under the divided working conditions
变量 | Copula熵 | ||||
---|---|---|---|---|---|
工况1 | 工况2 | 工况3 | 工况4 | 工况5 | |
风速 | 0.970 337 | 0.927 549 | 1.082 895 | 1.131 050 | 0.263 833 |
风速差分 | -0.072 644 | -0.032 224 | -0.073 496 | -0.083 175 | -0.117 486 |
轴箱温度 | -0.079 670 | -0.091 030 | 0.151 742 | 0.086 197 | -0.072 402 |
桨叶角度 | -0.058 844 | -0.083 841 | -0.097 249 | -0.111 900 | 0.232 762 |
扭缆角度 | -0.078 972 | -0.154 075 | -0.121 333 | -0.083 636 | -0.093 983 |
发电机绕组温度 | 0.239 652 | 0.180 823 | 0.726 258 | 0.744 076 | 0.554 680 |
[1] | 李昊璋, 刘苹元, 王锦鸿, 等. 我国风电产业的发展现状分析及未来展望[J]. 机电信息, 2020(21): 91-94. |
LI Haozhang, LIU Pingyuan, WANG Jinhong, et al. Current situation analysis and future prospect of Chinese wind power industry[J]. Mechanical and Electrical Information, 2020(21): 91-94. | |
[2] |
靳晶新, 叶林, 吴丹曼, 等. 风能资源评估方法综述[J]. 电力建设, 2017, 38(4): 1-8.
doi: 1000-7229(2017)04-0001-08 |
JIN Jingxin, YE Lin, WU Danman, et al. Review of wind energy resource assessment methods[J]. Electric Power Construction, 2017, 38(4): 1-8.
doi: 1000-7229(2017)04-0001-08 |
|
[3] | 巩伟峥, 许凌, 姚寅. 计及风速分布与机组惯量转化不确定性的风电场可用惯量估计[J]. 上海交通大学学报, 2021, 55(S2): 51-59. |
GONG Weizheng, XU Ling, YAO Yin. Estimation of the available inertia of wind farm considering the uncertainty of wind speed distribution and unit inertia transformation[J]. Journal of Shanghai Jiao Tong University, 2021, 55(S2): 51-59. | |
[4] | 薛禹胜, 雷兴, 薛峰, 等. 关于风电不确定性对电力系统影响的评述[J]. 中国电机工程学报, 2014, 34(29): 5029-5040. |
XUE Yusheng, LEI Xing, XUE Feng, et al. Review on the influence of wind power uncertainty on power system[J]. Proceedings of the CSEE, 2014, 34(29): 5029-5040. | |
[5] | 蒋霖, 郑倩薇, 王枫, 等. 考虑直接负荷控制与风电不确定性的输电网扩展规划[J]. 电力系统保护与控制, 2020, 48(3): 138-146. |
JIANG Lin, ZHENG Qianwei, WANG Feng, et al. Transmission network expansion planning considering direct load control and wind power uncertainty[J]. Protection and Control of Power Systems, 2020, 48(3):138-146. | |
[6] |
陈逸珲, 林令淇, 田鑫, 等. 三级式风电AVC协调控制策略[J]. 综合智慧能源, 2022, 44(4):20-27.
doi: 10.3969/j.issn.2097-0706.2022.04.003 |
CHEN Yihui, LIN Lingqi, TIAN Xin, et al. Three-level wind power AVC coordinated control strategy[J]. Integrated Intelligent Energy, 2022, 44(4):20-27.
doi: 10.3969/j.issn.2097-0706.2022.04.003 |
|
[7] | 邓强, 詹红霞, 杨孝华, 等. 考虑风电不确定性和大用户直购电的电力系统经济调度[J]. 电力系统保护与控制, 2019, 47(14): 131-139. |
DENG Qiang, ZHAN Hongxia, YANG Xiaohua, et al. Power system economic dispatch considering wind power uncertainty and large user direct purchase power[J]. Protection and Control of Power Systems, 2019, 47(14): 131-139. | |
[8] | 徐双蝶. 考虑多重不确定性及相关性的配电网可靠性评估方法研究[D]. 上海: 上海交通大学, 2020. |
[9] | 李滨辰. 基于数值模拟的复杂地理环境下风资源影响因素的研究[D]. 成都: 电子科技大学, 2017. |
[10] | 孙若笛, 谢开贵. 计及风速-负荷相关性的配电网可靠性评估Monte Carlo 模拟法[J]. 电力系统保护与控制, 2012, 40(18): 12-18. |
SUN Ruodi, XIE Kaigui. A Monte Carlo simulation method for reliability evaluation of distribution network considering wind-load correlation[J]. Power System Protection and Control, 2012, 40(18): 12-18. | |
[11] | 谢远强. 风电机组异常状态辨识与缺陷预警方法研究[D]. 泉州: 华侨大学, 2019. |
[12] | 季峰, 蔡兴国, 王俊. 基于混合 Copula 函数的风电功率相关性分析[J]. 电力系统自动化, 2014, 38(2): 1-5. |
JI Feng, CAI Xingguo, WANG Jun. Wind power correlation analysis based on hybrid Copula function[J]. Automation of Electric Power Systems, 2014, 38(2): 1-5. | |
[13] | 罗兴艳. 考虑风电场相关性的配电网可靠性评估[D]. 太原: 太原科技大学, 2021. |
[14] | 丁家满, 唐渐, 王清心, 等. 基于 Copula 函数的电网规划指标相关性分析及建模[J]. 现代电子技术, 2018, 41(17):95-101. |
DING Jiaman, TANG Jian, WANG Qingxin, et al. Correlation analysis and modeling of power grid planning index based on Copula function[J]. Modern Electronics Technique, 2018, 41(17):95-101. | |
[15] | 苏晨博, 刘崇茹, 徐诗甜, 等. 利用贝叶斯线性回归结合混合Copula函数分析风电功率的相关性[J]. 中国电力, 2021, 54(8):182-189. |
SU Chenbo, LIU Chongru, XU Shitian, et al. Correlation analysis of wind power based on Bayesian linear regression combined with hybrid Copula function[J]. Power China, 2021, 54(8):182-189. | |
[16] |
PEARSON K. Mathematical contributions to the theory of evolution—On a form of spurious correlation which may arise when indices are used in the measurement of organs[J]. Proceedings of the Royal Society of London, 1897, 60: 489-498.
doi: 10.1098/rspl.1896.0076 |
[17] |
FIELLER E C, HARTLEY H O, PEARSON E S. Tests for rank correlation coefficients. I[J]. Biometrika, 1957, 44(3-4): 470-481.
doi: 10.1093/biomet/44.3-4.470 |
[18] | SKLAR M. Fonctions de repartition an dimensions et leurs marge[J]. Publications de l'Institut de Statistique de l'Université de Paris, 1959, 8: 229-231. |
[19] | MA J, SUN Z. Mutual information is copula entropy[J]. Tsinghua Science & Technology, 2011, 16(1): 51-54. |
[20] |
SHANNON C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3): 379-423.
doi: 10.1002/j.1538-7305.1948.tb01338.x |
[21] |
MA J. Discovering association with copula entropy[J]. arXiv:1907.12268, 2019.DOI:10.48550/arXiv.1907.12268.
doi: 10.48550/arXiv.1907.12268 |
[22] | BARAHONA B, HOELZL C, CHATZI E. Applying design knowledge and machine learning to SCADA data for classification of wind turbine operating regimes[C]// 2017 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2017: 1-8. |
[23] |
MA J. Estimating transfer entropy via copula entropy[J]. arXiv:1910.04375, 2019.DOI:10.48550/arXiv. 1910.04375.
doi: 10.48550/arXiv. 1910.04375 |
[24] | 王千, 王成, 冯振元, 等. K-means聚类算法研究综述[J]. 电子设计工程, 2012, 20(7): 21-24. |
WANG Qian, WANG Cheng, FENG Zhenyuan, et al. A survey on K-means clustering algorithm[J]. Electronic Design Engineering, 2012, 20(7): 21-24. |
[1] | HUANG Xiaofan, LI Jiarui, LIU Hui, TANG Xiaoping, WANG Ziyao, WANG Tong. Comprehensive benefit analysis on the cascade utilization of a power battery system [J]. Integrated Intelligent Energy, 2024, 46(7): 63-73. |
[2] | ZHANG Xunxiang, WU Jiekang, SUN Yehua, PENG Qijian. Capacity allocation optimization of hybrid energy storage systems considering fluctuation control on offshore wind power [J]. Integrated Intelligent Energy, 2024, 46(6): 54-65. |
[3] | YU Sheng, ZHOU Xia, SHEN Xicheng, DAI Jianfeng, LIU Zengji. Risk analysis on the source-grid-load-storage system affected by cyber attacks [J]. Integrated Intelligent Energy, 2024, 46(5): 41-49. |
[4] | GONG Gangjun, WANG Luyao, CHANG Zhuoyue, LIU Xu, XING Huidi. Security protection for integrated energy cyber physical systems based on energy hubs [J]. Integrated Intelligent Energy, 2024, 46(5): 65-72. |
[5] | LI Chengyun, YANG Dongsheng, ZHOU Bowen, YANG Bo, LI Guangdi. Digitization of new-type electric power systems based on digital twin technology [J]. Integrated Intelligent Energy, 2024, 46(2): 1-11. |
[6] | HE Shuwei, HAN Yinghui, XU Wenbin, ZHANG Yuanxun, SHAN Yulong, YU Yunbo. Simulation for CO2 emissions from private vehicles in Beijing under different energy strategies [J]. Integrated Intelligent Energy, 2023, 45(8): 26-35. |
[7] | LIU Yuanyuan, GENG Zhi, ZHANG Yuanfeng, ZHANG Liang, HAN Zhao, ZHANG Bin. Analysis of heat transfer characteristics and thermal-permeability coupling characteristics of single U-tube borehole heat exchangers [J]. Integrated Intelligent Energy, 2023, 45(4): 81-88. |
[8] | YANG Zhengjun, LIANG Shixing, XU Gang, LIU Wenyi, WANG Ying, CUI Jianwei. Capacity optimization configuration of wind-solar complementary electricity-alcohol cogeneration system [J]. Integrated Intelligent Energy, 2023, 45(12): 71-78. |
[9] | WANG Kaiting, LI Xiaobin, ZHANG Hongna, LIU Shen, QU Kaiyang, LI Fengchen. Comprehensive evaluation for energy saving and emission reduction performance of turbulent drag reducing agent in heating systems [J]. Integrated Intelligent Energy, 2022, 44(9): 40-50. |
[10] | XU Yangsen, ZHANG Lei, BI Lei. Development and challenges of intermediate-temperature proton-conducting solid oxide fuel cells [J]. Integrated Intelligent Energy, 2022, 44(8): 68-74. |
[11] | Chang YAN, Sheng HUANG, Yinpeng QU. Review on hydrogen production technology from offshore wind power to achieve carbon neutrality [J]. Integrated Intelligent Energy, 2022, 44(5): 30-40. |
[12] | Feng WANG, Peng LU, Qingtao ZHANG, Hui ZHAO, Huaiming WANG, Yangyang RU. Development trend and prospects of hydrogen production from offshore wind power [J]. Integrated Intelligent Energy, 2022, 44(5): 41-48. |
[13] | Xinye DU, Jianxi WANG, Yonghui SUN, Yi HE, Pengpeng WU, Wei ZHOU. Optimal planning of hybrid energy storage systems in microgrids considering seawater desalination and hydrogen production [J]. Integrated Intelligent Energy, 2022, 44(5): 49-55. |
[14] | Hengyuan GUO, Xiaofeng FENG, Guodong LI, Zhiguo DUAN, Yuanzheng LI. Low-carbon collaborative optimization for the commitment and maintenance of units considering hydrogen production equipment [J]. Integrated Intelligent Energy, 2022, 44(5): 78-87. |
[15] | WU Linrui, LIU Lu, MENG Yu, LI Yan, HU Nan, XU Hailong, CHEN Meiqi, ZHENG Wukang. Research progress of carbon-based catalyst materials for cathodes of Zn-air batteries [J]. Integrated Intelligent Energy, 2022, 44(4): 65-70. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||