Integrated Intelligent Energy ›› 2022, Vol. 44 ›› Issue (4): 65-70.doi: 10.3969/j.issn.2097-0706.2022.04.008
• Energy Storage and Peak Regulation Technology • Previous Articles Next Articles
WU Linrui(), LIU Lu*(
), MENG Yu, LI Yan, HU Nan, XU Hailong, CHEN Meiqi, ZHENG Wukang
Received:
2021-11-12
Revised:
2022-02-21
Published:
2022-04-25
Contact:
LIU Lu
E-mail:2822838781@qq.com;liulu@ccit.edu.cn
CLC Number:
WU Linrui, LIU Lu, MENG Yu, LI Yan, HU Nan, XU Hailong, CHEN Meiqi, ZHENG Wukang. Research progress of carbon-based catalyst materials for cathodes of Zn-air batteries[J]. Integrated Intelligent Energy, 2022, 44(4): 65-70.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2022.04.008
[1] |
童家麟, 洪庆, 吕洪坤, 等. 电源侧储能技术发展现状及应用前景综述[J]. 华电技术, 2021, 43(7):17-23.
doi: 10.3969/j.issn.1674-1951.2021.07.003 |
TONG Jialin, HONG Qing, LYU Hongkun, et al. Development status and application prospect of power side energy storage technology[J]. Huadian Technology, 2021, 43(7):17-23. | |
[2] |
位帅洁, 李帅辉, 赵志鹏, 等. 花状二硫化锡的储钠性能研究[J]. 华电技术, 2021, 43(7):37-41.
doi: 10.3969/j.issn.1674-1951.2021.07.006 |
WEI Shuaijie, LI Shuaihui, ZHAO Zhipeng, et al. Sodium storage performance of flower-like SnS2[J]. Huadian Technology, 2021, 43(7):37-41. | |
[3] | 吕佳歆, 张翠萍. 锂离子电池在电动车上的应用前景[J]. 化工时刊, 2019, 33(3):38-44. |
LYU Jiaxin, ZHANG Cuiping. Application perspective of lithium-ion battery on electrical vehicles[J]. Chemical Industry Times, 2019, 33(3):38-44. | |
[4] | 郝跃辉, 成怀刚, 钱阿妞. 异质结构碳材料的金属空气电池应用研究进展[J]. 无机盐工业, 2021, 53(6):23-30. |
HAO Yuehui, CHENG Huaigang, QIAN Aniu. Research progress of hetero-structured carbon materials for metal-O2 batteries applications[J]. Inorganic Chemicals Industry, 2021, 56(6):23-30. | |
[5] |
乔雪, 杨雪彪, 黄婷婷, 等. 纳米锗-锡/碳复合材料的合成与电化学性能研究[J]. 华电技术, 2021, 43(7):24-29.
doi: 10.3969/j.issn.1674-1951.2021.07.004 |
QIAO Xue, YANG Xuebiao, HUANG Tingting, et al. Synjournal and electrochemical performance of nano-Ge-Sn/C composite material[J]. Huadian Technology, 2021, 43(7):24-29. | |
[6] |
DA Y X, ZHAO F X, SHI J C, et al. Effects of ultrafine bismuth powder on the properties of zinc electrodes in Zinc-air batteries[J]. Journal of Electronic Materials, 2020, 49(4):2479-2490.
doi: 10.1007/s11664-020-07978-2 |
[7] |
GUO D H, SHIBUYA R, CHISATO A, et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J]. Science, 2016, 351(6271):361-365.
doi: 10.1126/science.aad0832 |
[8] | WU M G, WANG Y Q, Wei Z G, et al. Ternary doped porous carbon nanofifibers with excellent ORR and OER performance for zinc-air batteries[J]. Journal of Materials Chemistry, 2018, 23(6):10918-10925. |
[9] |
CHEN G D, XU Y Y, HUANG L, et al. Continuous nitrogen-doped carbon nanotube matrix for boosting oxygen electrocatalysis in rechargeable Zn-air batteries[J]. Journal of Energy Chemistry, 2021, 55(4):183-189.
doi: 10.1016/j.jechem.2020.07.012 |
[10] |
MENG Z H, CHEN N, CAI S C, et al. Rational design of hierarchically,porous,Fe-N-doped carbon as efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries[J]. Nano Research, 2021, 14(2):4768-4775.
doi: 10.1007/s12274-021-3422-z |
[11] |
LIU B, SHIOYAMA H, AKITA T, et al. Metal-organic framework as a template for porous carbon synjournal[J]. Journal of the American Chemical Society, 2008, 130(6):5390-5391.
doi: 10.1021/ja7106146 |
[12] | CHEN B L, YANG Z X, ZHU Y Q. Zeolitic imidazolate framework materials:Recent progress in synjournal and applications[J]. Journal of Materials Chemistry, 2014, 2(40):16811-16831. |
[13] |
NIU Q J, CHEN B L, GUO J X, et al. Flexible,porous,and metal-heteroatomdoped carbon nanofbers as efcient ORR electrocatalysts for Zn-Air battery[J]. Nano-Micro Letters, 2019, 11(1):1-17.
doi: 10.1007/s40820-018-0235-z |
[14] |
CAI P W, PENG X X, HAUNG J H, et al. Covalent organic frameworks derived hollow structured N-doped noble carbon for asymmetric-electrolyte Zn-air battery[J]. Science China Chemistry, 2019, 62(3):385-392.
doi: 10.1007/s11426-018-9395-1 |
[15] |
WANG J, WU H H, GAO D F, et al. High-density iron nanoparticles encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for Zinc-air battery[J]. Nano Energy, 2015, 13(4):387-396.
doi: 10.1016/j.nanoen.2015.02.025 |
[16] |
ZOU S B, LI J J, WU X Q, et al. Electrospun N-doped carbon nanofibers decorated with Fe3C nanoparticles as highly active oxygen reduction electrocatalysts for rechargeable Zn-air batteries[J]. Chemical Physics Letters, 2021, 778:138769.
doi: 10.1016/j.cplett.2021.138769 |
[17] |
WU M C, GUO B K, NIE A M, et al. Tailored architectures of FeNi alloy embedded in N-doped carbon as bifunctional oxygen electrocatalyst for rechargeable Zinc-air battery[J]. Journal of Colloid and Interface Science, 2020, 561(3):585-592.
doi: 10.1016/j.jcis.2019.11.033 |
[18] |
GUAN C, SUMBOJA A, ZANG W J, et al. Decorating Co/CoNx nanoparticles in nitrogen-doped carbon nanoarrays for flexible and rechargeable zinc-air batteries[J]. Energy Storage Materials, 2019, 16(1):243-250.
doi: 10.1016/j.ensm.2018.06.001 |
[19] |
BUSCH M, HALCK N B, KRAMM U I, et al. Beyond the top of the volcano?——A unified approach to electrocatalytic oxygen reduction and oxygen evolution[J]. Nano Energy, 2016, 29(11):126-135.
doi: 10.1016/j.nanoen.2016.04.011 |
[20] |
SU H Y, GORLIN Y, MAN I G. Identifying active surface phases for metal oxide electrocatalysts:A study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis[J]. Physical Chemistry Chemical Physics, 2012, 14(40):14010-14022.
doi: 10.1039/c2cp40841d |
[21] |
YAN L, XU Z Y, HU W K, et al. Formation of sandwiched leaf-like CNTs-Co/ZnCo2O4@NC-CNTs nanohybrids for high-power-density rechargeable Zn-air batteries[J]. Nano Energy: 2021, 82(1):105710.
doi: 10.1016/j.nanoen.2020.105710 |
[22] |
SUMBOJA A, LUBKE M, WANG Y, et al. All-solid-state,foldable,and rechargeable Zn-Air batteries based on manganese oxide grown on graphene-coated carbon cloth air cathode[J]. Advanced Energy Materials: 2017, 7(20):1700927.
doi: 10.1002/aenm.201700927 |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | WANG Zening, LI Wenzhong, LI Donghui, XU Taishan, YU Jun. Construction of the hierarchical autonomous power balance model for software-defined new power systems [J]. Integrated Intelligent Energy, 2024, 46(7): 1-11. |
[3] | HE Fangbo, PEI Ligeng, ZHENG Rui, FAN Kangjian, ZHANG Xiaoman, LI Gengfeng. Construction of new power system in Shaanxi Province with the collaboration of source-network-load-storage [J]. Integrated Intelligent Energy, 2024, 46(7): 40-46. |
[4] | HUANG Xiaofan, LI Jiarui, LIU Hui, TANG Xiaoping, WANG Ziyao, WANG Tong. Comprehensive benefit analysis on the cascade utilization of a power battery system [J]. Integrated Intelligent Energy, 2024, 46(7): 63-73. |
[5] | YU Haibin, LU Wenzhou, TANG Liang, ZHANG Yuchen, ZOU Xiangyu, JIANG Yuliang, LIU Jiabao. Economic dispatch and profit distribution strategy for multi-agent virtual power plants considering risk preferences [J]. Integrated Intelligent Energy, 2024, 46(6): 66-77. |
[6] | WANG Liang, DENG Song. Anomalous data detection methods for new power systems [J]. Integrated Intelligent Energy, 2024, 46(5): 12-19. |
[7] | YU Sheng, ZHOU Xia, SHEN Xicheng, DAI Jianfeng, LIU Zengji. Risk analysis on the source-grid-load-storage system affected by cyber attacks [J]. Integrated Intelligent Energy, 2024, 46(5): 41-49. |
[8] | GONG Gangjun, WANG Luyao, CHANG Zhuoyue, LIU Xu, XING Huidi. Security protection for integrated energy cyber physical systems based on energy hubs [J]. Integrated Intelligent Energy, 2024, 46(5): 65-72. |
[9] | WANG Yongli, WANG Yanan, MA Ziben, QIN Yumeng, CHEN Xichang, TENG Yue. Effectiveness evaluation on energy trading systems taking blockchain technology [J]. Integrated Intelligent Energy, 2024, 46(4): 78-84. |
[10] | SU Panpan, WANG Xuetao, XING Lili, LI Haojie, LIU Mengjie. Research progress on preparation of liquid fuels by catalytic pyrolysis of pretreated biomass [J]. Integrated Intelligent Energy, 2024, 46(3): 1-11. |
[11] | DING Leyan, KE Song, YANG Jun, SHI Xingye. Control strategy of virtual synchronous generators based on adaptive control parameter setting [J]. Integrated Intelligent Energy, 2024, 46(3): 35-44. |
[12] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[13] | LI Chengyun, YANG Dongsheng, ZHOU Bowen, YANG Bo, LI Guangdi. Digitization of new-type electric power systems based on digital twin technology [J]. Integrated Intelligent Energy, 2024, 46(2): 1-11. |
[14] | ZHANG Xinyi, YANG Bo. Stability analysis on islanded microgrids with grid-forming and grid-following converters [J]. Integrated Intelligent Energy, 2024, 46(2): 12-18. |
[15] | SUN Na, DONG Haiying, CHEN Wei, MA Hulin. Secondary frequency modulation control strategy for large-scale grid-side energy storage devices in new power systems [J]. Integrated Intelligent Energy, 2024, 46(2): 59-67. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||