Integrated Intelligent Energy ›› 2024, Vol. 46 ›› Issue (3): 1-11.doi: 10.3969/j.issn.2097-0706.2024.03.001
SU Panpan(), WANG Xuetao(
), XING Lili, LI Haojie, LIU Mengjie
Received:
2023-08-10
Revised:
2023-09-06
Published:
2024-03-25
Contact:
WANG Xuetao
E-mail:supanpan990325@163.com;wxt7682@163.com
Supported by:
CLC Number:
SU Panpan, WANG Xuetao, XING Lili, LI Haojie, LIU Mengjie. Research progress on preparation of liquid fuels by catalytic pyrolysis of pretreated biomass[J]. Integrated Intelligent Energy, 2024, 46(3): 1-11.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2024.03.001
Table 1
Preparation of bio-oil by the coupling of pretreatment and catalytic pyrolysis
原料 | 催化剂 | 预处理条件 | 热解条件 | 主要结论 |
---|---|---|---|---|
碱木质素 | H3PO4 | 盐酸,50 ℃,60 min | 550 ℃,催化剂与木质素的质量比为0.7 | 苯酚质量浓度较未处理的提高了将近11倍(从0.6 mg/mL增加到7.0 mg/mL)[ |
松木 | HZSM-5 | 醋酸,30 ℃ ,4 h 烘焙,260 ℃ | 500 ℃,催化剂与松木的质量比为6∶1 | 酸浸预处理提高了左旋葡聚糖的含量,烘焙预处理提高了儿茶酚类的含量,催化温度的升高和催化剂负载量的增加均促进了芳香烃的生成[ |
稻壳 | ZSM-5 | 酸浸醋酸,2 h 烘焙,210,240,270 ℃ | 550 ℃,催化剂与松木的质量比为19∶1 | 耦合浸出和烘焙进一步提高了生物油中苯、甲苯和二甲苯 (BTX)化合物的相对含量[ |
芒草 | ZSM-5 | 烘焙脱氧,280 ℃ | 600 ℃ | 芳烃质量分数最高可达66.29%,生物BTX的选择性随着焙烧温度的升高而提高[ |
松木 | HZSM-5 | 烘焙,220,250,280 ℃ | 550 ℃,15 min | 芳烃含量进一步提高,随着反应温度的升高,生物油产率下降,生物炭产率增加[ |
南松 | HZSM-5 | 烘焙,150,175,200,225 ℃ | 40~900 ℃,木质素与催化剂的质量比为1∶4 | 烘焙对木质素产生负面影响,使得生物油中的芳烃产率下降[ |
[1] |
NGUYEN X P, HOANG A T, OLCER A I, et al. Biomass-derived 2,5-dimethylfuran as a promising alternative fuel: An application review on the compression and spark ignition engine[J]. Fuel Processing Technology, 2021, 214:106687.
doi: 10.1016/j.fuproc.2020.106687 |
[2] |
SHARIFZADEH M, SADEQZADEH M, GUO M, et al. The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: Review of the state of art and future research directions[J]. Progress in Energy and Combustion Science, 2019, 71: 1-80.
doi: 10.1016/j.pecs.2018.10.006 |
[3] |
HASSAN N S, JALIL A A, HITAM C N C, et al. Biofuels and renewable chemicals production by catalytic pyrolysis of cellulose: A review[J]. Environmental Chemistry Letters, 2020, 18(5): 1625-1648.
doi: 10.1007/s10311-020-01040-7 |
[4] |
ZHANG Y, DING Z L, HOSSAIN M S, et al. Recent advances in lignocellulosic and algal biomass pretreatment and its biorefinery approaches for biochemicals and bioenergy conversion[J]. Bioresource Technology, 2023, 367:128281.
doi: 10.1016/j.biortech.2022.128281 |
[5] |
WANG Y, AKBARZADEH A, CHONG L, et al. Catalytic pyrolysis of lignocellulosic biomass for bio-oil production: A review[J]. Chemosphere, 2022, 297:134181.
doi: 10.1016/j.chemosphere.2022.134181 |
[6] |
ZHANG J J, XIE J, ZHANG H D. Sodium hydroxide catalytic ethanol pretreatment and surfactant on the enzymatic saccharification of sugarcane bagasse[J]. Bioresource Technology, 2021, 319: 124171.
doi: 10.1016/j.biortech.2020.124171 |
[7] |
QIU B B, TAO X D, WANG J H, et al. Research progress in the preparation of high-quality liquid fuels and chemicals by catalytic pyrolysis of biomass: A review[J]. Energy Conversion and Management, 2022, 261: 115647.
doi: 10.1016/j.enconman.2022.115647 |
[8] |
BRETHAUER S, SHAHAB R L, STUDER M H. Impacts of biofilms on the conversion of cellulose[J]. Applied Microbiology and Biotechnology, 2020, 104: 5201-5212.
doi: 10.1007/s00253-020-10595-y pmid: 32337627 |
[9] |
DAI G X, WANG K, WANG G Y, et al. Initial pyrolysis mechanism of cellulose revealed by in-situ DRIFT analysis and theoretical calculation[J]. Combustion and Flame, 2019, 208: 273-280.
doi: 10.1016/j.combustflame.2019.07.009 |
[10] |
YANG X X, FU Z W, HAN D D, et al. Unveiling the pyrolysis mechanisms of cellulose: Experimental and theoretical studies[J]. Renewable Energy, 2020, 147: 1120-1130.
doi: 10.1016/j.renene.2019.09.069 |
[11] |
GAO Z X, LI N, WANG Y Q, et al. Pyrolysis behavior of xylan-based hemicellulose in a fixed bed reactor[J]. Journal of Analytical and Applied Pyrolysis, 2020, 146: 104772.
doi: 10.1016/j.jaap.2020.104772 |
[12] |
YANG H P, LI S J, LIU B, et al. Hemicellulose pyrolysis mechanism based on functional group evolutions by two-dimensional perturbation correlation infrared spectroscopy[J]. Fuel, 2020, 267: 117302.
doi: 10.1016/j.fuel.2020.117302 |
[13] |
DOUVARTZIDES S, CHARISIOU N D, WANG W, et al. Catalytic fast pyrolysis of agricultural residues and dedicated energy crops for the production of high energy density transportation biofuels. Part II: Catalytic research[J]. Renewable Energy, 2022, 189:315-338.
doi: 10.1016/j.renene.2022.02.106 |
[14] |
YANG H P, DONG Z G, LIU B, et al. A new insight of lignin pyrolysis mechanism based on functional group evolutions of solid char[J]. Fuel, 2021, 288: 119719.
doi: 10.1016/j.fuel.2020.119719 |
[15] |
WĄDRZYK M, JANUS R, LEWANDOWSKI M, et al. On mechanism of lignin decomposition-investigation using microscale techniques: Py-GC-MS, Py-FT-IR and TGA[J]. Renewable Energy, 2021, 177: 942-952.
doi: 10.1016/j.renene.2021.06.006 |
[16] |
LIU R J, LIU G J, YOUSAF B, et al. Novel investigation of pyrolysis mechanisms and kinetics for functional groups in biomass matrix[J]. Renewable and Sustainable Energy Reviews, 2022, 153: 111761.
doi: 10.1016/j.rser.2021.111761 |
[17] |
ALVIRA P, TOMAS-PEJO E, BALLESTEROS M, et al. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review[J]. Bioresource Technology, 2010, 101(13):4851-4861.
doi: 10.1016/j.biortech.2009.11.093 pmid: 20042329 |
[18] |
仉利, 姚宗路, 赵立欣, 等. 生物质热解制备高品质生物油研究进展[J]. 化工进展, 2021, 40(1): 139-150.
doi: 10.16085/j.issn.1000-6613.2020-0486 |
JI Li, YAO Zonglu, ZHAO Lixin, et al. Research progress on preparation of high-quality bio-oil from biomass pyrolysis[J]. Chemical Industry Progress, 2021, 40(1): 139-150. | |
[19] |
ENCINAR J M, BELTRAN F J, RAMIRO A, et al. Catalyzed pyrolysis of grape and olive bagasse. Influence of catalyst type and chemical treatment[J]. Industrial & Engineering Chemistry Research, 1997, 36(10):4176-4183.
doi: 10.1021/ie960795b |
[20] |
SHEN J, WANG X S, GARCIA-PEREZ M, et al. Effects of particle size on the fast pyrolysis of oil mallee woody biomass[J]. Fuel, 2009, 88(10): 1810-1817.
doi: 10.1016/j.fuel.2009.05.001 |
[21] |
XIAO R R, YANG W, CONG X S, et al. Thermogravimetric analysis and reaction kinetics of lignocellulosic biomass pyrolysis[J]. Energy, 2020, 201: 117537.
doi: 10.1016/j.energy.2020.117537 |
[22] |
胡海涛, 李允超, 王贤华, 等. 生物质预处理技术及其对热解产物的影响综述[J]. 生物质化学工程, 2014, 48(1): 44-50.
doi: 10.3969/j.issn.1673-5854.2014.01.008 |
HU Haitao, LI Yunchao, WANG Xianhua, et al. Review of biomass pretreatment technology and its effect on pyrolysis products[J]. Biomass Chemical Engineering, 2014, 48(1): 44-50.
doi: 10.3969/j.issn.1673-5854.2014.01.008 |
|
[23] |
LU Z G, MA C, ZHAO Z Y, et al. Effects of hot air drying time on properties of biomass brick[J]. Applied Thermal Engineering, 2016, 109: 487-496.
doi: 10.1016/j.applthermaleng.2016.08.105 |
[24] |
WANG X H, CHEN H P, LUO K, et al. The influence of microwave drying on biomass pyrolysis[J]. Energy & Fuels, 2008, 22(1): 67-74.
doi: 10.1021/ef700300m |
[25] |
WANG C Q, WANG W L, LIN L T, et al. A stepwise microwave synergistic pyrolysis approach to produce sludge-based biochars:Feasibility study simulated by laboratory experiments[J]. Fuel, 2020, 272: 117628.
doi: 10.1016/j.fuel.2020.117628 |
[26] |
HOANG A T, NIZETIC S, ONG H C, et al. Acid-based lignocellulosic biomass biorefinery for bioenergy production: Advantages, application constraints, and perspectives[J]. Journal of Environmental Management, 2021, 296: 113194.
doi: 10.1016/j.jenvman.2021.113194 |
[27] |
WANG H, SRINIVASAN R, YU F, et al. Effect of acid, alkali, and steam explosion pretreatments on characteristics of bio-oil produced from pinewood[J]. Energy & Fuels, 2011, 25(8): 3758-3764.
doi: 10.1021/ef2004909 |
[28] | 段得振, 吴力克, 边聪聪, 等. 一种微生物菌肥制作方法、制得的微生物菌肥及复合微生物制剂:CN105110826A[P]. 2015-12-02. |
[29] | FOSTON M, RAGAUSKAS A J. Changes in lignocellulosic supramolecular and ultrastructure during dilute acid pretreatment of populus and switchgrass[J]. Biomass & Bioenergy, 2010, 34(12): 1885-1895. |
[30] |
FENG Y, LI G Y, LI X Y, et al. Enhancement of biomass conversion in catalytic fast pyrolysis by microwave-assisted formic acid pretreatment[J]. Bioresource Technology, 2016, 214: 520-527.
doi: S0960-8524(16)30640-X pmid: 27176672 |
[31] |
ZHOU S Y, XUE Y, CAI J M, et al. An understanding for improved biomass pyrolysis: Toward a systematic comparison of different acid pretreatments[J]. Chemical Engineering Journal, 2021, 411: 128513.
doi: 10.1016/j.cej.2021.128513 |
[32] |
DAI L L, WANG Y P, LIU Y H, et al. Microwave-assisted pyrolysis of formic acid pretreated bamboo sawdust for bio-oil production[J]. Environmental Research, 2020, 182: 108988.
doi: 10.1016/j.envres.2019.108988 |
[33] |
LU Q, ZHANG Z X, YE X N, et al. Catalytic fast pyrolysis of alkali-pretreated bagasse for selective preparation of 4-vinylphenol[J]. Journal of Analytical and Applied Pyrolysis, 2019, 143: 104669.
doi: 10.1016/j.jaap.2019.104669 |
[34] |
LI J H, BURRA K G, WANG Z W, et al. Effect of alkali and alkaline metals on gas formation behavior and kinetics during pyrolysis of pine wood[J]. Fuel, 2021, 290:120081.
doi: 10.1016/j.fuel.2020.120081 |
[35] |
ALAYONT Ş, KAYAN D B, DURAK H, et al. The role of acidic, alkaline and hydrothermal pretreatment on pyrolysis of wild mustard (Sinapis arvensis) on the properties of bio-oil and bio-char[J]. Bioresource Technology Reports, 2022, 17: 100980.
doi: 10.1016/j.biteb.2022.100980 |
[36] | MAJEKE B M, COLLARD F X, TYHODA L, et al. The application of enzymatic pretreatment with subsequent pyrolysis to improve the production of phenols from selected industrial (technical) lignins[J]. Waste and Biomass Valorization, 2022: 1-7. |
[37] |
SCHILLING J S, AI J, BLANCHETTE R A, et al. Lignocellulose modifications by brown rot fungi and their effects, as pretreatments, on cellulolysis[J]. Bioresource Technology, 2012, 116: 147-154.
doi: 10.1016/j.biortech.2012.04.018 pmid: 22609669 |
[38] | KAN T, STREZOV V, EVANS T J. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters[J]. Renewable & Sustainable Energy Reviews, 2016, 57: 1126-1140. |
[39] | 方书起, 蒋璐瑶, 李攀, 等. 预处理生物质催化热解制取生物油的研究进展[J]. 现代化工, 2020, 40(4): 41-50. |
FANG Shuqi, JIANG Luyao, LI Pan, et al. Research progress on catalytic pyrolysis of pretreated biomass to produce bio-oil[J]. Modern Chemical Industry, 2020, 40(4): 41-50. | |
[40] | 蒋丽群, 郑安庆, 王小波, 等. 生物质定向快速热解制备左旋葡聚糖和芳烃的研究进展[J]. 新能源进展, 2018, 6(5): 402-409. |
JIANG Liqun, ZHENG Anqing, WANG Xiaobo, et al. Research progress on preparation of L-glucans and aromatic hydrocarbons by directed rapid pyrolysis of biomass[J]. New Energy Progress, 2018, 6(5): 402-409. | |
[41] |
BOATENG A A, MULLEN C A. Fast pyrolysis of biomass thermally pretreated by torrefaction[J]. Journal of Analytical and Applied Pyrolysis, 2013, 100: 95-102.
doi: 10.1016/j.jaap.2012.12.002 |
[42] |
CHEN D Y, ZHOU J B, ZHANG Q S. Effects of torrefaction on the pyrolysis behavior and bio-oil properties of rice husk by using TG-FTIR and Py-GC/MS[J]. Energy & Fuels, 2014, 28(9): 5857-5863.
doi: 10.1021/ef501189p |
[43] | 陈东雨, 张婷, 黄顺朝, 等. 盐酸洗涤与烘焙预处理对甜高粱秸秆热解生物油组分的影响[J]. 农业工程学报, 2021, 37(11): 222-229. |
CHEN Dongyu, ZHANG Ting, HUANG Shunchao, et al. Effect of hydrochloric acid washing and baking pretreatment on the pyrolysis of bio-oil components of sweet sorghum straw[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(11): 222-229. | |
[44] |
DAI L L, WANG Y P, LIU Y H, et al. Bridging the relationship between hydrothermal pretreatment and co-pyrolysis: Effect of hydrothermal pretreatment on aromatic production[J]. Energy Conversion and Management, 2019, 180: 36-43.
doi: 10.1016/j.enconman.2018.10.079 |
[45] |
LIU Y L, ZHAI Y B, LI S H, et al. Production of bio-oil with low oxygen and nitrogen contents by combined hydrothermal pretreatment and pyrolysis of sewage sludge[J]. Energy, 2020, 203: 117829.
doi: 10.1016/j.energy.2020.117829 |
[46] |
ZHUANG X Z, SONG Y P, WANG X M, et al. Pyrolysis of hydrothermally pretreated biowastes: The controllability on the formation of NOx precursors[J]. Chemical Engineering Journal, 2020, 393: 124727.
doi: 10.1016/j.cej.2020.124727 |
[47] |
HU X, GUNAWAN R, MOURANT D, et al. Upgrading of bio-oil via acid-catalyzed reactions in alcohols:A mini review[J]. Fuel Processing Technology, 2017, 155: 2-19.
doi: 10.1016/j.fuproc.2016.08.020 |
[48] | 李承宇, 张军, 袁浩然, 等. 纤维素热解转化的研究进展[J]. 燃料化学学报, 2021, 49(12): 1733-1751. |
LI Chengyu, ZHANG Jun, YUAN Haoran, et al. Research progress on pyrolysis of cellulose[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1733-1751.
doi: 10.1016/S1872-5813(21)60134-2 |
|
[49] |
PERALTA M A, SOOKNOI T, DANUTHAI T, et al. Deoxygenation of benzaldehyde over CsNaX zeolites[J]. Journal of Molecular Catalysis A, Chemical, 2009, 312(1-2):78-86.
doi: 10.1016/j.molcata.2009.07.008 |
[50] |
RAHMAN M M, LIU R H, CAI J M. Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil:A review[J]. Fuel Processing Technology, 2018, 180: 32-46.
doi: 10.1016/j.fuproc.2018.08.002 |
[51] |
DALLUGE D L, KIM K H, BROWN R C. The influence of alkali and alkaline earth metals on char and volatile aromatics from fast pyrolysis of lignin[J]. Journal of Analytical and Applied Pyrolysis, 2017, 127: 385-393.
doi: 10.1016/j.jaap.2017.07.011 |
[52] |
EIBNER S, BROUST F, BLIN J, et al. Catalytic effect of metal nitrate salts during pyrolysis of impregnated biomass[J]. Journal of Analytical and Applied Pyrolysis, 2015, 113: 143-152.
doi: 10.1016/j.jaap.2014.11.024 |
[53] |
LENG E W, WANG Y, GONG X, et al. Effect of KCl and CaCl2 loading on the formation of reaction intermediates during cellulose fast pyrolysis[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2263-2270.
doi: 10.1016/j.proci.2016.06.167 |
[54] |
ZHU C, MADUSKAR S, PAULSEN A D, et al. Alkaline-earth-metal-catalyzed thin-film pyrolysis of cellulose[J]. ChemCatChem, 2016, 8(4): 818-829.
doi: 10.1002/cctc.v8.4 |
[55] |
LIU C J, WANG H M, KARIM A M, et al. Catalytic fast pyrolysis of lignocellulosic biomass[J]. Chemical Society Reviews, 2014, 43(22):7594-7623.
doi: 10.1039/c3cs60414d pmid: 24801125 |
[56] |
LU Q X, YUAN S F, LIU C X, et al. A Fe-Ca/SiO2 catalyst for efficient production of light aromatics from catalytic pyrolysis of biomass[J]. Fuel, 2020, 279: 118500.
doi: 10.1016/j.fuel.2020.118500 |
[57] |
MORTENSEN P M, GRUNWALDT J D, JENSEN P A, et al. A review of catalytic upgrading of bio-oil to engine fuels[J]. Applied Catalysis A, General, 2011, 407(1-2): 1-19.
doi: 10.1016/j.apcata.2011.08.046 |
[58] |
KALOGIANNIS K G, STEFANIDIS S D, LAPPAS A A. Catalyst deactivation, ash accumulation and bio-oil deoxygenation during ex situ catalytic fast pyrolysis of biomass in a cascade thermal-catalytic reactor system[J]. Fuel Processing Technology, 2019, 186:99-109.
doi: 10.1016/j.fuproc.2018.12.008 |
[59] |
WANG J, ZHANG B, ZHONG Z P, et al. Catalytic fast co-pyrolysis of bamboo residual and waste lubricating oil over an ex-situ dual catalytic beds of MgO and HZSM-5: Analytical PY-GC/MS study[J]. Energy Conversion and Management, 2017, 139: 222-231.
doi: 10.1016/j.enconman.2017.02.047 |
[60] |
LIN X N, ZHANG Z F, ZHANG Z J, et al. Catalytic fast pyrolysis of a wood-plastic composite with metal oxides as catalysts[J]. Waste Management, 2018, 79: 38-47.
doi: S0956-053X(18)30443-4 pmid: 30343767 |
[61] |
CHIRESHE F, FRANÇOIS-XAVIER C, GÖRGENS J F. Production of an upgraded bio-oil with minimal water content by catalytic pyrolysis: Optimisation and comparison of CaO and MgO performances[J]. Journal of Analytical and Applied Pyrolysis, 2020, 146: 104751.
doi: 10.1016/j.jaap.2019.104751 |
[62] |
CHEN X, CHE Q F, LI S J, et al. Recent developments in lignocellulosic biomass catalytic fast pyrolysis: Strategies for the optimization of bio-oil quality and yield[J]. Fuel Processing Technology, 2019, 196:106180.
doi: 10.1016/j.fuproc.2019.106180 |
[63] |
BAKAR M S A, TITILOYE J O. Catalytic pyrolysis of rice husk for bio-oil production[J]. Journal of Analytical and Applied Pyrolysis, 2013, 103:362-368.
doi: 10.1016/j.jaap.2012.09.005 |
[64] |
NI S, LIU R H, RAHMAN M M, et al. A review on the catalytic pyrolysis of biomass for the bio-oil production with ZSM-5: Focus on structure[J]. Fuel Processing Technology, 2020, 199:106301.
doi: 10.1016/j.fuproc.2019.106301 |
[65] |
SUN L Z, ZHANG X D, CHEN L, et al. Comparision of catalytic fast pyrolysis of biomass to aromatic hydrocarbons over ZSM-5 and Fe/ZSM-5 catalysts[J]. Journal of Analytical and Applied Pyrolysis, 2016, 121: 342-346.
doi: 10.1016/j.jaap.2016.08.015 |
[66] |
HE P, SHAN W, XIAO Y, et al. Performance of Zn/ZSM-5 for in situ catalytic upgrading of pyrolysis bio-oil by methane[J]. Topics in Catalysis, 2015, 59(1): 86-93.
doi: 10.1007/s11244-015-0508-4 |
[67] |
CHE Q F, YANG M J, WANG X H, et al. Influence of physicochemical properties of metal modified ZSM-5 catalyst on benzene, toluene and xylene production from biomass catalytic pyrolysis[J]. Bioresource Technology, 2019, 278: 248-254.
doi: S0960-8524(19)30101-4 pmid: 30708327 |
[68] |
KUMAR R, STREZOV V, LOVELL E, et al. Bio-oil upgrading with catalytic pyrolysis of biomass using copper/zeolite-nickel/zeolite and copper-nickel/zeolite catalysts[J]. Bioresource Technology, 2019, 279: 404-409.
doi: S0960-8524(19)30087-2 pmid: 30712994 |
[69] |
XUE S, LUO Z Y, ZHOU Q G, et al. Regulation mechanism of three key parameters on catalytic characterization of molybdenum modified bimetallic micro-mesoporous catalysts during catalytic fast pyrolysis of enzymatic hydrolysis lignin[J]. Bioresource Technology, 2021, 337: 125396.
doi: 10.1016/j.biortech.2021.125396 |
[70] | BINNAL P, RAJASHEKHARA S, MANJUNATH S, et al. ZSM-5 catalyzed copyrolysis of sugarcane bagasse with LDPE: Influence of microwave-assisted acid pretreatment of sugarcane bagasse on yield and composition of gasoline range oil[J]. Biomass Conversion and Biorefinery, 2020: 1-17. |
[71] |
VEKSHA A, ZAMAN W, LAYZELL D B, et al. Enhancing biochar yield by co-pyrolysis of bio-oil with biomass: Impacts of potassium hydroxide addition and air pretreatment prior to co-pyrolysis[J]. Bioresource technology, 2014, 171: 88-94.
doi: 10.1016/j.biortech.2014.08.040 pmid: 25189513 |
[72] |
DUAN D L, LEI H W, WANG Y P, et al. Renewable phenol production from lignin with acid pretreatment and ex-situ catalytic pyrolysis[J]. Journal of Cleaner Production, 2019, 231: 331-340.
doi: 10.1016/j.jclepro.2019.05.206 |
[73] |
XIN X, PANG S S, MIGUEL MERCADER F, et al. The effect of biomass pretreatment on catalytic pyrolysis products of pine wood by Py-GC/MS and principal component analysis[J]. Journal of Analytical and Applied Pyrolysis, 2019, 138: 145-53.
doi: 10.1016/j.jaap.2018.12.018 |
[74] |
ZHANG S P, ZHU S G, ZHANG H L, et al. Catalytic fast pyrolysis of rice husk: Effect of coupling leaching with torrefaction pretreatment[J]. Journal of Analytical and Applied Pyrolysis, 2018, 133: 91-96.
doi: 10.1016/j.jaap.2018.04.016 |
[75] |
TIAN H, CHEN L, HUANG Z J, et al. Increasing the bio-aromatics yield in the biomass pyrolysis oils by the integration of torrefaction deoxygenation pretreatment and catalytic fast pyrolysis with a dual catalyst system[J]. Renewable Energy, 2022, 187: 561-571.
doi: 10.1016/j.renene.2022.01.096 |
[76] |
CHEN D Y, LI Y J, DENG M S, et al. Effect of torrefaction pretreatment and catalytic pyrolysis on the pyrolysis poly-generation of pine wood[J]. Bioresource Technology, 2016, 214: 615-622.
doi: S0960-8524(16)30545-4 pmid: 27183238 |
[77] |
MAHADEVAN R, ADHIKARI S, SHAKYA R, et al. Effect of torrefaction temperature on lignin macromolecule and product distribution from HZSM-5 catalytic pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2016, 122: 95-105.
doi: 10.1016/j.jaap.2016.10.011 |
[78] | 方书起, 蒋璐瑶, 李攀, 等. 不同预处理生物质的热解及催化热解特性研究[J]. 华中科技大学学报(自然科学版), 2022, 50(1): 69-74. |
FANG Shuqi, JIANG Luyao, LI Pan, et al. Pyrolysis and catalytic pyrolysis characteristics of different pretreated biomass[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50(1): 69-74. | |
[79] |
范德锴, 付洁, 刘洋, 等. 纤维素热解制备高值化学品的研究综述[J]. 综合智慧能源, 2023, 45(5): 24-31.
doi: 10.3969/j.issn.2097-0706.2023.05.003 |
FAN Dekai, FU Jie, LIU Yang, et al. Review on the preparation of high-value chemicals from cellulose pyrolysis[J]. Integrated Intelligent Energy, 2023, 45(5): 24-31.
doi: 10.3969/j.issn.2097-0706.2023.05.003 |
[1] | WANG Zening, LI Wenzhong, LI Donghui, XU Taishan, YU Jun. Construction of the hierarchical autonomous power balance model for software-defined new power systems [J]. Integrated Intelligent Energy, 2024, 46(7): 1-11. |
[2] | YIN Linfei, MENG Yujie. Short-term wind power forecasting based on DenseNet convolutional neural networks [J]. Integrated Intelligent Energy, 2024, 46(7): 12-20. |
[3] | HE Fangbo, PEI Ligeng, ZHENG Rui, FAN Kangjian, ZHANG Xiaoman, LI Gengfeng. Construction of new power system in Shaanxi Province with the collaboration of source-network-load-storage [J]. Integrated Intelligent Energy, 2024, 46(7): 40-46. |
[4] | HUANG Xiaofan, LI Jiarui, LIU Hui, TANG Xiaoping, WANG Ziyao, WANG Tong. Comprehensive benefit analysis on the cascade utilization of a power battery system [J]. Integrated Intelligent Energy, 2024, 46(7): 63-73. |
[5] | WANG Jinglong, WANG Hui, YANG Ye, ZHENG Yingying. Collaborative optimization method for power-heat-gas integrated energy systems considering multiple uncertainties [J]. Integrated Intelligent Energy, 2024, 46(4): 42-51. |
[6] | LI Yimin, DONG Haiying, DING Kun, WANG Jinyan. Multi-stage optimal allocation of energy storage considering long-term load probability prediction [J]. Integrated Intelligent Energy, 2024, 46(2): 19-27. |
[7] | HU Kaiyong, LIU Feng, WU Xiujie, HU Yunqing, ZHENG Yi, TIAN Shen. Carbon-economy analysis on energy supply methods for rural buildings based on Trnsys energy consumption prediction [J]. Integrated Intelligent Energy, 2023, 45(8): 64-71. |
[8] | YU Haibin, GAO Yiling, LU Zengjie, DONG Shuai, LU Lin, REN Yizhi. Low-carbon economic scheduling of deep peak regulating market with the participation of wind power,thermal power,storage and carbon capture units considering demand response [J]. Integrated Intelligent Energy, 2023, 45(8): 80-89. |
[9] | WU Tong, WANG Shouxin, CHENG Xingxing, LIU Kunkun. Analysis of material and energy flows in biomass resource utilization under industrial symbiosis system [J]. Integrated Intelligent Energy, 2023, 45(7): 30-39. |
[10] | ZHOU Shuxin, FAN Huailin, HU Xun. Preparation of biomass-based carbon materials and its application as electrodes in supercapacitors [J]. Integrated Intelligent Energy, 2023, 45(5): 1-12. |
[11] | LI Qingyang, LI Chao, JIANG Yuchen, HU Xun. Progress in utilization of semi-coke as solid fuel [J]. Integrated Intelligent Energy, 2023, 45(5): 13-23. |
[12] | FAN Dekai, FU Jie, LIU Yang, ZHOU Chunbao, DAI Jianjun. Review on the preparation of high-value chemicals from cellulose pyrolysis [J]. Integrated Intelligent Energy, 2023, 45(5): 24-31. |
[13] | SU Yanxin, WANG Xuetao, XING Lili, LI Haojie, ZHANG Xingyu. Effect of precursors on pine sawdust steam reforming over Ni/ZSM-5 catalyst for hydrogen production [J]. Integrated Intelligent Energy, 2023, 45(5): 32-38. |
[14] | JIANG Yuchen, LI Qingyang, HU Xun. Research progress of biochar prepared by microwave pyrolysis technology [J]. Integrated Intelligent Energy, 2023, 45(5): 46-62. |
[15] | CHEN Wenxuan, LI Xueqin, LIU Peng, LI Yanling, LU Yan, LEI Tingzhou. Study on pyrolysis law of catalytic biomass tar model compounds [J]. Integrated Intelligent Energy, 2023, 45(5): 63-69. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||