Integrated Intelligent Energy ›› 2023, Vol. 45 ›› Issue (7): 30-39.doi: 10.3969/j.issn.2097-0706.2023.07.004
• Integrated Energy System • Previous Articles Next Articles
WU Tong1,2(), WANG Shouxin3(
), CHENG Xingxing1,2,*(
), LIU Kunkun1,2
Received:
2023-05-10
Revised:
2023-06-05
Accepted:
2023-07-07
Published:
2023-07-25
Supported by:
CLC Number:
WU Tong, WANG Shouxin, CHENG Xingxing, LIU Kunkun. Analysis of material and energy flows in biomass resource utilization under industrial symbiosis system[J]. Integrated Intelligent Energy, 2023, 45(7): 30-39.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2023.07.004
Table 1
Bill of materials for each factory
产业 | 输入 | 输出 | 来源 | ||||
---|---|---|---|---|---|---|---|
项目 | 单位 | 数值 | 项目 | 单位 | 数值 | ||
生物乙醇厂 | 热 | MJ/m³ | 16 378.40 | 沼气 | m³/m³ | 113.29 | [ |
电力 | MW | 7 936.40 | 固体废物 | kg/m³ | 4 055.61 | ||
秸秆 | t/m³ | 5.85 | 废水 | m³/m³ | 18.25 | ||
过程水 | kg/m³ | 13 446.00 | 石膏 | kg/m³ | 1 117.00 | ||
循环水 | kg/m³ | 2 268.00 | 生物乙醇 | kg/h | 88 542.00 | ||
稀硫酸 | kg/m³ | 636.00 | |||||
Ca(OH)2 | kg/m³ | 481.00 | |||||
生物质CHP厂 | 秸秆 | t/h | 2.40 | 热 | MJ/h | 9 580.00 | [ |
秸秆热值 | MJ/kg | 14.90 | 电力 | MW | 2.780 | ||
合成气 | t/h | 6.07 | 灰分 | t/h | 0.13 | ||
生物油精炼厂 | 秸秆 | t/h | 4.69 | 生物油 | t/h | 1.01 | [ |
热量 | MJ/h | 20 520.00 | 生物炭 | t/h | 1.13 | ||
水 | t/h | 6.50 | 灰分 | t/h | 可忽略 | ||
电力 | MW | 0.210 | 废水 | t/h | 5.30 | ||
AD厂 | 粪便 | t/d | 14.00 | 沼气 | m³/d | 6 605.00 | [ |
固体废物 | t/d | 70.50 | 废液废渣 | t/d | 76.65 | ||
水泥厂 | 石灰石 | t/h | 163.80 | 水泥 | t/h | 135.36 | [ |
黏土 | t/h | 4.79 | 废气 | t/h | 648.37 | ||
空气 | m³/h | 786.44 | 高低温蒸汽 | t/h | 204.40 | ||
煤 | t/h | 14.89 | 灰尘 | t/h | 20.06 | ||
石膏 | t/h | 6.80 | 热力 | MJ/h | 16 560.00 | ||
电力 | MW | 13.800 |
Table 3
Analysis results of material and energy flows in synergistic mode 2
模式 | 能源 | 流量 | QLHV | 热量/(MJ·h-1) | 电力/(MW·h) |
---|---|---|---|---|---|
生物质CHP厂、AD厂、生物乙醇厂 | 秸秆 | 5.18 t/h | 14 900.00 MJ/t | 18 979.00 | 5.200 |
沼气(a) | 275.00 m³/h | 17.64 MJ/m³ | 1 569.80 | 0.437 | |
沼气(b) | 74.77 m³/h | 22.40 MJ/m³ | 542.00 | 0.150 | |
粪便/食品残余 | 0.58 t/h /2.94 t/h | — | -133.20 | -0.036 | |
秸秆(b) | 3.86 t/h | 14 900.00 MJ/t | -10 800.00 | -1.460 | |
木质素残留物 | 2.68 t/h | 19 000.00 MJ/t | 12 521.20 | 3.440 | |
总计 | 22 678.80 | 7.730 |
Table 4
Analysis results of material and energy flows in synergistic mode 3
模式 | 能源 | 流量 | QLHV | 热量/(MJ·h-1) | 电力/(MW·h) |
---|---|---|---|---|---|
生物质CHP厂、AD厂、生物乙醇厂、生物油精炼厂 | 秸秆 | 5.18 t/h | 14 900.00 MJ/t | 19 828.00 | 5.600 |
沼气(a) | 275.00 m³/h | 17.64 MJ/m³ | 1 640.60 | 0.470 | |
沼气(b) | 74.77 m³/h | 22.40 MJ/m³ | 566.40 | 0.160 | |
粪便/食品残余物 | 0.58 t/h /2.94 t/h | — | -133.20 | -0.036 | |
秸秆(b) | 3.86 t/h | 14 900.00 MJ/t | -10 800.00 | -1.460 | |
秸秆(c) | 4.69 t/h | 14 900.00 MJ/t | -20 520.00(高温烟气) | -0.210 | |
木质素/固体残留物 | 2.68 t/h | 19 000.00 MJ/t | 13 081.30 | 3.700 | |
生物炭(c) | 0.44 t/h | 25.30 MJ/kg | 2 859.80 | — | |
可燃气(c) | 0.81 t/h | 11.50 MJ/kg | 3 150.30 | 0.900 | |
烟气补偿 | — | — | -9 180.00 | -0.855 | |
总计 | 21 013.20 | 8.270 |
Table 5
Analysis results of material and energy flows in synergistic mode 4
模式 | 能源 | 流量 | QLHV | 热量/(MJ·h-1) | 电力/(MW·h) |
---|---|---|---|---|---|
生物质CHP厂、AD厂、生物乙醇厂、生物油精炼厂、水泥厂 | 秸秆 | 5.18 t/h | 14 900.00 MJ/t | 20 677.00 | 6.000 |
沼气(a) | 275.00 m³/h | 17.64 MJ/m³ | 1 712.40 | 0.500 | |
沼气(b) | 74.77 m³/h | 22.40 MJ/m³ | 591.20 | 0.174 | |
粪便/食品残余物 | 0.58 t/h /2.94 t/h | — | -133.20 | -0.036 | |
秸秆(b) | 3.86 t/h | 14 900.00 MJ/t | -10 800.00 | -1.460 | |
秸秆(c) | 4.69 t/h | 14 900.00 MJ/t | -20 52(高温烟气) | -0.210 | |
木质素/固体残留物(b) | 2.68 t/h | 19 000.00 MJ/t | 13 641.50 | 3.960 | |
生物炭(c) | 0.44 t/h | 25.30 MJ/kg | 2 982.30 | — | |
可燃气(c) | 0.81 t/h | 11.50 MJ/kg | 3 288.20 | 0.965 | |
高温蒸汽(d) | 102.20 t/h | — | 24 840.00 | 2.300 | |
煤、石灰石 | 7.445 t/h /81.90 t/h | 29.30 MJ/kg | — | — | |
烟气补偿 | — | — | -9 180.00 | -0.855 | |
总计 | 47 619.40 | 11.340 |
[1] |
LIU Z, LIU B, GUO J, et al. Conventional and advanced exergy analysis of a novel transcritical compressed carbon dioxide energy storage system[J]. Energy Conversion and Management, 2019, 198:111807.
doi: 10.1016/j.enconman.2019.111807 |
[2] |
GENG L, WANG Y, WANG Y, et al. Effect of the injection pressure and orifice diameter on the spray characteristics of biodiesel[J]. Journal of Traffic and Transportation Engineering (English Edition), 2020, 7(3):331-339.
doi: 10.1016/j.jtte.2018.12.004 |
[3] |
YANG Y, TIAN Z, LAN Y, et al. An overview of biofuel power generation on policies and finance environment, biofuelsapplied, device and performance[J]. Journal of Traffic and Transportation Engineering (English Edition), 2021, 8(4):534-553.
doi: 10.1016/j.jtte.2021.07.002 |
[4] | XU X L, CHEN Y J. A comprehensive model to analyze straw recycling logistics costs for sustainable development: Evidence from biomass power generation[J]. Environmental Progress & Sustainable Energy, 2020, 39(4): e13394. |
[5] |
LI K, SONG J, DUAN H, et al. Integrated assessment of straw utilization for energy production from views of regional energy,environmental and socioeconomic benefits[J]. Journal of Cleaner Production, 2018, 190:787-798.
doi: 10.1016/j.jclepro.2018.04.191 |
[6] |
OBYDENKOVA S V, KOURIS P D, HENSEN E J M. Environmental economics of lignin derived transport fuels[J]. Bioresour Technol, 2017, 243:589-599.
doi: 10.1016/j.biortech.2017.06.157 |
[7] |
CHOWDHURY T, CHOWDHURY H. Is the commercial sector of Bangladesh sustainable?—Viewing via an exergetic approach[J]. Journal of Cleaner Production, 2019, 228:544-556.
doi: 10.1016/j.jclepro.2019.04.270 |
[8] |
MIRKOUEI A, HAAPALA K R, SESSIONS J, et al. A mixed biomass-based energy supply chain for enhancing economic and environmental sustainability benefits: A multi-criteria decision making framework[J]. Applied Energy, 2017, 206: 1088-1101.
doi: 10.1016/j.apenergy.2017.09.001 |
[9] |
MARTIN M, HARRIS S. Prospecting the sustainability implications of an emerging industrial symbiosis network[J]. Resources,Conservation and Recycling, 2018, 138:246-256.
doi: 10.1016/j.resconrec.2018.07.026 |
[10] |
DADDI T, NUCCI B, IRALDO F. Using Life Cycle Assessment(LCA) to measure the environmental benefits of industrial symbiosis in an industrial cluster of SMEs[J]. Journal of Cleaner Production, 2017, 147:157-164.
doi: 10.1016/j.jclepro.2017.01.090 |
[11] |
CHERTOW M R. Industrial symbiosis:Literature and taxonomy[J]. Annual Review of Energy and the Environment, 2000, 25(1):313-337.
doi: 10.1146/energy.2000.25.issue-1 |
[12] |
ZHANG Y, ZHENG H, CHEN B, et al. Social network analysis and network connectedness analysis for industrial symbiotic systems: Model development and case study[J]. Frontiers of Earth Science, 2012, 7(2):169-181.
doi: 10.1007/s11707-012-0349-4 |
[13] |
FANG K, DONG L, REN J Z, et al. Carbon footprints of urban transition: Tracking circular economy promotions in Guiyang,China[J]. Ecological Modelling, 2017, 365:30-44.
doi: 10.1016/j.ecolmodel.2017.09.024 |
[14] | 鞍钢集团鞍山钢铁推出“1+6”产业规划[J]. 现代矿业, 2018(2):197. |
[15] | 鞠沾仑, 金庆珍, 张海昕, 等. 山东钢铁行业转型升级的思考[C]// 2014年山东省科协学术年会论文集. 2014:262-267. |
[16] |
GONELA V, ZHANG J. Design of the optimal industrial symbiosis system to improve bioethanol production[J]. Journal of Cleaner Production, 2014, 64: 513-534.
doi: 10.1016/j.jclepro.2013.07.059 |
[17] |
NEVES A, GODINA R, AZEVEDO S, et al. A comprehensive review of industrial symbiosis[J]. Journal of Cleaner Production, 2019, 247(20):119113.
doi: 10.1016/j.jclepro.2019.119113 |
[18] | 王春燕, 王震. 迁安市工业共生的影响因素分析[C]// 2015年中国环境科学学会年会论文集. 2015:477-485. |
[19] |
DONG H, LIU Z, GENG Y, et al. Evaluating environmental performance of industrial park development: The case of Shenyang[J]. Journal of Industrial Ecology, 2018, 22(6): 1402-1412.
doi: 10.1111/jiec.2018.22.issue-6 |
[20] | 李嘉祺, 陈艳波, 陈来军, 等. 工业园区综合能源系统低碳经济优化运行模型[J]. 高电压技术, 2022, 48(8):3190-3200. |
LI Jiaqi, CHEN Yanbo, CHEN Laijun, et al. Low-carbon economy optimization model of integrated energy system in industrial parks[J]. High Voltage Engineering, 2022, 48(8):3190-3200. | |
[21] |
PARK J, PARK J M, PARK H S. Scaling‐up of industrial symbiosis in the Korean National Eco‐Industrial Park Program: Examining its evolution over the 10 years between 2005-2014[J]. Journal of Industrial Ecology, 2019, 23(1): 197-207.
doi: 10.1111/jiec.2019.23.issue-1 |
[22] |
CAO X, WEN Z, TIAN H, et al. Transforming the cement industry into a key environmental infrastructure for urban ecosystem: A case study of an industrial city in China[J]. Journal of Industrial Ecology, 2018, 22(4):881-893.
doi: 10.1111/jiec.12638 |
[23] |
JAYASUNDARA P M, JAYASINGHET K, RATHNAYAKE M. Process simulation integrated life cycle net energy analysis and ghg assessment of fuel-grade bioethanol production from unutilized rice straw[J]. Waste and Biomass Valorization, 2022. 13(8):3689-3705.
doi: 10.1007/s12649-022-01763-4 |
[24] |
CUSENZA M A, CELLURA M, GUARINO F, et al. Life cycle environmental assessment of energy valorization of the residual agro-food industry[J]. Energies, 2021, 14(17):5491.
doi: 10.3390/en14175491 |
[25] |
VAN SCHALKWYK D L, MANDEGARI M, FARZAD S, et al. Techno-economic and environmental analysis of bio-oil production from forest residues via non-catalytic and catalytic pyrolysis processes[J]. Energy Conversion and Management, 2020, 213: 112815..
doi: 10.1016/j.enconman.2020.112815 |
[26] | RANGANATHAN P. Preliminary techno-economic evaluation of 2G ethanol production with co-products from rice straw[J]. Biomass Conversion and Biorefinery, 2020(3):3673-3686. |
[27] |
RATHNAYAKE M, CHAIREONGSIRIKUL T. Process simulation based life cycle assessment for bioethanol production from cassava, molassescane, and strawrice[J]. Journal of Cleaner Production, 2018, 190:24-35.
doi: 10.1016/j.jclepro.2018.04.152 |
[28] |
ZHENG Y, LIU C, ZHU J, et al. Carbon footprint analysis for biomass-fueled combined heat and power station: A case study[J]. Agriculture, 2022, 12(8):1146.
doi: 10.3390/agriculture12081146 |
[29] |
CAVALCANTI E J C, CARVALHO M, DA SILVA D R S. Energy, exergy and exergoenvironmental analyses of a sugarcane bagasse power cogeneration system[J]. Energy conversion and management, 2020, 222: 113232.
doi: 10.1016/j.enconman.2020.113232 |
[30] |
CHEN H, XUE K, WU Y, et al. Thermodynamic and economic analyses of a solar-aided biomass-fired combined heat and power system[J]. Energy, 2021, 214: 119023.
doi: 10.1016/j.energy.2020.119023 |
[31] | YANG Q, ZHOU H, ZHANG X, et al. Hybrid life-cycle assessment for energy consumption and greenhouse gas emissions of a typical biomass gasification power plant in China[J]. Journal of Cleaner Production, 2018: 661-671. |
[32] |
ZAINI I N, SOPHONRAT N, SJBLOM K, et al. Creating values from biomass pyrolysis in sweden: Co-production of H2,biocarbon,and bio-oil[J]. Processes, 2021, 9(3):415.
doi: 10.3390/pr9030415 |
[33] |
INAYAT A, AHMED A, TARIQ R, et al. Techno-economical evaluation of bio-oil production via biomass fast pyrolysis process: A review[J]. Frontiers in Energy Research, 2022, 9: 770355.
doi: 10.3389/fenrg.2021.770355 |
[34] | RAVENDRAN R R, ABDULRAZIK A, ZAILAN R. Aspen Plus simulation of optimal biogas production in anaerobic digestion process IOP conference series[J]. Materials Science and Engineering, 2019, 702(1):012001. |
[35] | PUTRA M A, TEH K C, TAN J, et al. Sustainability assessment of Indonesian cement manufacturing via integrated life cycle assessment and analytical hierarchy process method[J]. Environmental Science and Pollution Research, 2020(4):29352-29360. |
[36] |
GAO T, SHEN L, SHEN M, et al. Analysis of material flow and consumption in cement production process[J]. Journal of Cleaner Production, 2016, 112(JAN.20PT.1):553-565.
doi: 10.1016/j.jclepro.2015.08.054 |
[1] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[2] | HU Kaiyong, LIU Feng, WU Xiujie, HU Yunqing, ZHENG Yi, TIAN Shen. Carbon-economy analysis on energy supply methods for rural buildings based on Trnsys energy consumption prediction [J]. Integrated Intelligent Energy, 2023, 45(8): 64-71. |
[3] | ZENG Hui, DU Yuan, LI Tao, XUE Yixun, SUN Kaiyuan, XIA Tian, SUN Hongbin. Low-carbon planning of a park-level integrated electric and heating system considering carbon trading and green certificate trading [J]. Integrated Intelligent Energy, 2023, 45(2): 22-29. |
[4] | ZHANG Rongquan, LI Gangqiang, BU Siqi, LIU Fang, ZHU Yuxiang. Economic operation of a multi-energy system based on adaptive learning rate firefly algorithm [J]. Integrated Intelligent Energy, 2022, 44(7): 49-57. |
[5] | FENG Lejun, FU Zhihao, LIU Feng, GONG Yutong, LI Yimin, HAN Dongjiang, SUI Jun. Study on the influence of technical and economic factors on the economy of a natural gas distributed energy system [J]. Integrated Intelligent Energy, 2022, 44(10): 65-70. |
[6] | YAO Zhehao, ZHENG Puyan, YUAN Yanzhou. Operation optimization of dual-source distributed energy supply systems based on two-level strategy [J]. Integrated Intelligent Energy, 2022, 44(1): 56-62. |
[7] | ZHAO Xin, ZHENG Wenyu, HOU Zhihua, CHEN Heng, XU Gang. Research on economic dispatch of multi-energy complementary system based on Particle Swarm Optimization [J]. Huadian Technology, 2021, 43(4): 14-20. |
[8] | ZHU Haidong, HAO Hao, ZHENG Jian, ZHANG Tingyu, CHEN Zhikai, HU Enjun. Design of integrated energy system for parks based on complementation of cold, heat and electricity [J]. Huadian Technology, 2021, 43(4): 34-38. |
[9] | FANG Xu, PENG Xuefeng, ZHANG Kai, MA Jingbang, ZHAO Ruixiang, WANG Jinxing. Development of heating retrofit using waste heat from coal-fired CHP system cold end [J]. Huadian Technology, 2021, 43(3): 48-56. |
[10] | LI Na, YI Zuyao, BAI Yinlei. Review and prospect of advanced heat supply and intelligent power generation technologies [J]. Huadian Technology, 2021, 43(3): 31-39. |
[11] | ZHANG Dongwang, FAN Haodong, ZHAO Bing, WANG Jialin, GONG Taiyi, ZHANG Man, LI Shiyuan, YANG Hairui, LYU Junfu. Development of biomass power generation technology at home and abroad [J]. Huadian Technology, 2021, 43(3): 70-75. |
[12] | LU Junhui, WANG Suilin, TANG Jinjing, REN Kexin. Review and prospects of carbon capture technology assisted by renewable energy,waste heat and combination of them [J]. Huadian Technology, 2021, 43(11): 97-109. |
[13] | ZHANG Kaiping, ZHANG Hongfu, GAO Mingming, WANG Yong, MA Cong. Research progress on biomass power generation in CFB boilers [J]. Huadian Technology, 2021, 43(10): 43-49. |
[14] | SUN Hao,CHEN Yonghua. Research on multiple energy flow co-simulation technology applied in integrated energy system [J]. Huadian Technology, 2020, 42(5): 66-72. |
[15] | WEI Haijiao,LU Yuanwei*,ZHANG Cancan,WU Yuting,LI Weidong,ZHAO Dongming. Status and prospect of flexibility regulation technology for coal-fired power plants [J]. Huadian Technology, 2020, 42(4): 57-63. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||