Integrated Intelligent Energy ›› 2022, Vol. 44 ›› Issue (7): 49-57.doi: 10.3969/j.issn.2097-0706.2022.07.006
• Intelligent Power • Previous Articles Next Articles
ZHANG Rongquan1(), LI Gangqiang2,*(
), BU Siqi3(
), LIU Fang2(
), ZHU Yuxiang2(
)
Received:
2022-03-01
Revised:
2022-04-24
Published:
2022-07-25
Contact:
LI Gangqiang
E-mail:zhangrq19931102@163.com;gangqiangli999@163.com;siqi.bu@polyu.edu.hk;liufang@huanghuai.edu.cn;zhuyuxiangcn@163.com
CLC Number:
ZHANG Rongquan, LI Gangqiang, BU Siqi, LIU Fang, ZHU Yuxiang. Economic operation of a multi-energy system based on adaptive learning rate firefly algorithm[J]. Integrated Intelligent Energy, 2022, 44(7): 49-57.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2022.07.006
Table 2
Hourly operational costs of various systems 元
时刻 | MES | MESWBESS | MESWREG | CCHP |
---|---|---|---|---|
01:00 | 1 830 | 1 831 | 1 854 | 1 838 |
02:00 | 1 810 | 1 796 | 1 822 | 1 826 |
03:00 | 1 778 | 1 772 | 1 794 | 1 817 |
04:00 | 1 712 | 1 705 | 1 700 | 1 742 |
05:00 | 1 750 | 1 762 | 1 758 | 1 765 |
06:00 | 1 703 | 1 642 | 1 675 | 1 696 |
07:00 | 1 752 | 1 690 | 1 754 | 1 758 |
08:00 | 1 771 | 1 756 | 1 782 | 1 823 |
09:00 | 1 800 | 1 793 | 1 865 | 1 880 |
10:00 | 1 756 | 1 760 | 2 000 | 2 019 |
11:00 | 1 754 | 1 796 | 2 132 | 2 177 |
12:00 | 1 967 | 1 945 | 2 245 | 2 236 |
13:00 | 1 969 | 1 995 | 2 423 | 2 379 |
14:00 | 1 971 | 1 973 | 2 272 | 2 322 |
15:00 | 1 905 | 1 961 | 2 191 | 2 241 |
16:00 | 1 868 | 1 830 | 2 093 | 2 141 |
17:00 | 1 284 | 1 362 | 1 666 | 1 756 |
18:00 | 1 588 | 1 645 | 1 837 | 1 901 |
19:00 | 2 144 | 2 142 | 2 218 | 2 205 |
20:00 | 2 145 | 2 157 | 2 174 | 2 181 |
21:00 | 2 104 | 2 129 | 2 138 | 2 149 |
22:00 | 2 057 | 2 055 | 2 052 | 2 069 |
23:00 | 2 009 | 1 991 | 1 994 | 1 997 |
24:00 | 1 923 | 1 942 | 1 945 | 1 964 |
合计 | 44 350 | 44 430 | 47 384 | 47 882 |
[1] | 张俊锋, 许文娟, 王跃锜, 等. 面向碳中和的中国碳排放现状调查与分析[J]. 华电技术, 2021, 43(10): 1-10. |
ZHANG Junfeng, XU Wenjuan, WANG Yueqi, et al. Investigation and analysis on carbon emission status in China on the path to carbon neutrality[J]. Huadian Technology, 2021, 43(10): 1-10. | |
[2] |
蒋文坤, 韩颖慧, 薛智文, 等. 多能互补能源系统中储能原理及其应用[J]. 综合智慧能源, 2022, 44(1): 63-71.
doi: 10.3969/j.issn.2097-0706.2022.01.009 |
JIANG Wenkun, HAN Yinghui, XUE Zhiwen, et al. Energy storage technologies and their applications in multi-energy complementary power system[J]. Integrated Intelligent Energy, 2022, 44(1): 63-71.
doi: 10.3969/j.issn.2097-0706.2022.01.009 |
|
[3] |
CHEN Y, PARK B, KOU X, et al. A comparison study on trading behavior and profit distribution in local energy transaction games[J]. Applied Energy, 2020, 280 :115941.
doi: 10.1016/j.apenergy.2020.115941 |
[4] |
MIAO B, LIN J, LI H, et al. Day-ahead energy trading strategy of regional integrated energy system considering energy cascade utilization[J]. IEEE Access, 2020, 8: 138021-138035.
doi: 10.1109/ACCESS.2020.3007224 |
[5] |
WANG Y, QI C, DONG H, et al. Optimal design of integrated energy system considering different battery operation strategy[J]. Energy, 2020, 212: 118537.
doi: 10.1016/j.energy.2020.118537 |
[6] |
WANG H, ZHANG R, PENG J, et al. GPNBI-inspired MOSFA for Pareto operation optimization of integrated energy system[J]. Energy Conversion and Management, 2017, 151:524-537.
doi: 10.1016/j.enconman.2017.09.005 |
[7] |
石立宝, 翟放. 考虑风-光-荷不确定性的数据驱动型机组组合模型[J]. 综合智慧能源, 2022, 44(1): 18-25.
doi: 10.3969/j.issn.2097-0706.2022.01.003 |
SHI Libao, ZHAI Fang. Data-driven unit commitment model incorporating the uncertainty of wind-PV-load[J]. Integrated Intelligent Energy, 2022, 44(1): 18-25.
doi: 10.3969/j.issn.2097-0706.2022.01.003 |
|
[8] |
YANG X, YAO K, MENG W, et al. Optimal scheduling of CCHP with distributed energy resources based on water cycle algorithm[J]. IEEE Access, 2019, 7:105583-105592.
doi: 10.1109/ACCESS.2019.2926803 |
[9] | 张荣权, 王怀智, 王贵斌, 等. 基于改进萤火虫算法的冷热电联供系统多目标优化调度[J]. 华北电力大学学报(自然科学版), 2018, 45(1):1-6. |
ZHANG Rongquan, WANG Huaizhi, WANG Guibin, et al. Multi-objective optimal dispatch of combined cooling heating and power systems based on improved firefly algorithm[J]. Journal of North China Electric Power University (Natural Science Edition), 2018, 45(1):1-6. | |
[10] |
RAUF H T, SHOAIB U, LALI M I, et al. Particle swarm optimization with probability sequence for global optimization[J]. IEEE Access, 2020, 8: 110535-110549.
doi: 10.1109/ACCESS.2020.3002725 |
[11] | FISTER I, JR I F, YANG X S, et al. A comprehensive review of firefly algorithms[J]. Swarm & Evolutionary Computation, 2013, 13(1): 34-46. |
[12] |
FISTER JR I, YANG X S, FISTER I, et al. Memetic firefly algorithm for combinatorial optimization[J]. Mathematics, 2012, 5:1-14.
doi: 10.3390/math5010001 |
[13] |
FANG F. A novel optimal operational strategy for the CCHP system based on two operating modes[J]. IEEE Transactions on Power Systems, 2012, 27(2):1032-1041.
doi: 10.1109/TPWRS.2011.2175490 |
[14] |
蓝静, 朱继忠, 李盛林, 等. 考虑碳惩罚的电化学储能消纳风光与调峰研究[J]. 综合智慧能源, 2022, 44(1): 9-17.
doi: 10.3969/j.issn.2097-0706.2022.01.002 |
LAN Jing, ZHU Jizhong, LI Shenglin, et al. Research on electrochemical energy storage to assist new energy consumption and peak load regulation considering carbon penalty[J]. Integrated Intelligent Energy, 2022, 44(1): 9-17.
doi: 10.3969/j.issn.2097-0706.2022.01.002 |
|
[15] |
WANG H Z, PENG J C, LIU Y T, et al. GPNBI inspired MOSDE for electric power dispatch considering wind energy penetration[J]. Energy, 2018, 144:404-419.
doi: 10.1016/j.energy.2017.12.005 |
[16] |
AHMADIAHANGAR R, KARAMI H, HUSEV O, et al. Analytical approach for maximizing self-consumption of nearly zero energy buildings——Case study: Baltic region[J]. Energy, 2022, 238:121744.
doi: 10.1016/j.energy.2021.121744 |
[17] |
YAO W, ZHAO J, WEN F, et al. A Hierarchical decomposition approach for coordinated dispatch of plug-in electric vehicles[J]. IEEE Transactions on Power Systems, 2013, 28(3): 2768-2778.
doi: 10.1109/TPWRS.2013.2256937 |
[18] |
LIU X, GAO B, ZHU Z, et al. Non-cooperative and cooperative optimisation of battery energy storage system for energy management in multi-microgrid[J]. IET Generation Transmission & Distribution, 2018, 12(10): 2369-2377.
doi: 10.1049/iet-gtd.2017.0401 |
[19] |
KIM K, CHOI Y, KIM H. Data-driven battery degradation model leveraging average degradation function fitting[J]. Electronics Letters, 2017, 53(2): 102-104.
doi: 10.1049/el.2016.3096 |
[20] |
LIU C, WANG D, YIN Y. Two-stage optimal economic scheduling for commercial building multi-energy system through Internet of Things[J]. IEEE Access, 2019, 7: 174562-174572.
doi: 10.1109/ACCESS.2019.2957267 |
[21] | WANG H, WANG W, ZHOU X, et al. Firefly algorithm with neighborhood attraction[J]. Information Sciences, 2016, 382: 374-387. |
[22] |
ZHANG R, LI G, MA Z. A deep learning based hybrid framework for day-ahead electricity price forecasting[J]. IEEE Access, 2020, 8: 143423-143436.
doi: 10.1109/ACCESS.2020.3014241 |
[23] | 欧阳喆, 周永权. 自适应步长萤火虫优化算法[J]. 计算机应用, 2011, 31(7):1804-1807. |
OUYANG Zhe, ZHOU Yongquan. Self-adaptive step glowworm swarm optimization algorithm[J]. Journal of Computer Applications, 2011, 31(7):1804-1807. | |
[24] |
WANG Huaizhi, LI Gangqiang, WANG Guibin, et al. Deep learning based ensemble approach for probabilistic wind power forecasting[J]. Applied Energy, 2017, 188(15): 56-70.
doi: 10.1016/j.apenergy.2016.11.111 |
[25] |
ZHU Q, LUO X, ZHANG B, et al. Mathematical modeling and optimization of a large-scale combined cooling, heat, and power system that incorporates unit changeover and time-of-use electricity price[J]. Energy Convers Manage, 2017, 133(1): 385-398.
doi: 10.1016/j.enconman.2016.10.056 |
[26] |
ZHANG R, AZIZ S, FAROOQ M U, et al. A wind energy supplier bidding strategy using combined EGA-inspired HPSOIFA optimizer and deep learning predictor[J]. Energies, 2021, 14(11):3059.
doi: 10.3390/en14113059 |
[27] |
ZHOU H, ZHANG Y, YANG L, et al. Short-term photovoltaic power forecasting based on long short term memory neural network and attention mechanism[J]. IEEE Access, 2019, 7: 78063-78074.
doi: 10.1109/ACCESS.2019.2923006 |
[28] | 王天峰, 刘丙栋, 张一晨, 等. 考虑调峰响应的峰谷型售电套餐效用评估方法[J]. 华电技术, 2021, 43(9): 78-84. |
WANG Tianfeng, LIU Bingdong, ZHANG Yichen, et al. Utility evaluation method for peak-valley electricity retail packages considering peak regulation responses[J]. Huadian Technology, 2021, 43(9):78-84. | |
[29] | 胡倩, 孙志达, 江坷滕, 等. 基于短期负荷打捆预测的售电公司偏差考核控制方法[J]. 华电技术, 2021, 43(4): 47-55. |
HU Qian, SUN Zhida, JIANG Keteng, et al. Deviation assessment and control method for electricity sales companies based on short-term load bundling forecast[J]. Huadian Technology, 2021, 43(4): 47-55. |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[3] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
[4] | ZHENG Qingming, JING Yanwei, LIANG Tao, CHAI Lulu, LYU Liangnian. Optimized scheduling on large-scale hydrogen production system for off-grid renewable energy based on DDPG algorithm [J]. Integrated Intelligent Energy, 2024, 46(6): 35-43. |
[5] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
[6] | MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer [J]. Integrated Intelligent Energy, 2024, 46(4): 60-67. |
[7] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[8] | WEI Xikai, TAN Xiaoshi, LIN Ming, CHENG Junjie, XIANG Keqi, DING Shuxin. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035 [J]. Integrated Intelligent Energy, 2024, 46(3): 72-78. |
[9] | LU Wentian. Increment-exchange-based decentralized multi-objective optimal power flow algorithm for active distribution grids [J]. Integrated Intelligent Energy, 2024, 46(2): 43-48. |
[10] | TAN Jiuding, LI Shuaibing, LI Mingche, MA Xiping, KANG Yongqiang, DONG Haiying. Optimized scheduling of the power grid with participation of distributed microgrids considering their uncertainties [J]. Integrated Intelligent Energy, 2024, 46(1): 38-48. |
[11] | FANG Gang, WANG Jing, ZHANG Bobo, WANG Junzhe. Research on optimization algorithm of industrial park microgrid configuration based on Pareto solution set [J]. Integrated Intelligent Energy, 2024, 46(1): 49-55. |
[12] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
[13] | XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development [J]. Integrated Intelligent Energy, 2023, 45(9): 48-58. |
[14] | LI Qinggen, SUN Na, DONG Haiying. Optimal configuration for shared energy storage based on improved whale optimization algorithm [J]. Integrated Intelligent Energy, 2023, 45(9): 65-76. |
[15] | LIU Tianyang, GAO Yajing, XIE Dian, ZHAO Liang. Analysis on the construction path of functional zero-carbon parks [J]. Integrated Intelligent Energy, 2023, 45(8): 44-52. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||