Huadian Technology ›› 2021, Vol. 43 ›› Issue (4): 14-20.doi: 10.3969/j.issn.1674-1951.2021.04.003
• Integrated Energy System • Previous Articles Next Articles
ZHAO Xin(), ZHENG Wenyu, HOU Zhihua, CHEN Heng, XU Gang*(
)
Received:
2021-01-07
Revised:
2021-04-06
Published:
2021-04-25
Contact:
XU Gang
E-mail:ncepuzhx@163.com;xgncepu@163.com
CLC Number:
ZHAO Xin, ZHENG Wenyu, HOU Zhihua, CHEN Heng, XU Gang. Research on economic dispatch of multi-energy complementary system based on Particle Swarm Optimization[J]. Huadian Technology, 2021, 43(4): 14-20.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.1674-1951.2021.04.003
[1] | 胡勇. 可持续性视角下太阳能热发电项目选址决策研究[D]. 北京:华北电力大学, 2018 . |
[2] | 杨晓巳, 陶新磊. 综合能源技术路线研究[J]. 华电技术, 2019,41(11):22-25. |
YANG Xiaosi, TAO Xinlei. Research on integrated energy technical route[J]. Huadian Technology, 2019,41(11):22-25. | |
[3] | 刘吉臻. 新能源电力系统建模与控制[M]. 北京: 科学出版社, 2015: 25-38. |
[4] | 孙思宇, 于成琪, 孙涛, 等. 冷热电三联供分布式能源系统研究进展[J]. 华电技术, 2019,41(11):26-31. |
SUN Siyu, YU Chengqi, SUN Tao, et al. Advance in study on CCHP distributed energy system[J]. Huadian Technology, 2019,41(11):26-31. | |
[5] | LASSETER R H. Smart distribution: Coupled microgrids[J]. Proceedings of the IEEE, 2011,99(6):1074-1082. |
[6] | LUND H, MÜNSTER E. Integrated energy systems and local energy markets[J]. Energy Policy, 2006,34(10):1152-1160. |
[7] | MATHIESEN B V, LUND H, CONNOLLY D, et al. Smart energy systems for coherent 100% renewable energy and transport solutions[J]. Applied Energy, 2015,145:139-154. |
[8] | 孙振宇, 沈明忠. 基于工业厂区的多能互补系统在微能源网的应用[J]. 华电技术, 2019,41(11):46-48. |
SUN Zhenyu, SHEN Mingzhong. Application of multi-energy complementary system in micro-energy network of an industrial plant[J]. Huadian Technology, 2019,41(11):46-48. | |
[9] | 李洋, 吴鸣, 周海明, 等. 基于全能流模型的区域多能源系统若干问题探讨[J]. 电网技术, 2015,39(8):2230-2237. |
LI Yang, WU Ming, ZHOU Haiming, et al. Discussion on several issues of regional multi-energy system based on all-energy flow model[J]. Power System Technology, 2015,39(8):2230-2237. | |
[10] | 卢胤龙, 韩明新, 任洪波, 等. 多能互补分布式能源系统优化设计研究进展[J]. 上海电力学院学报, 2018,34(3):229-235. |
LU Yinlong, HAN Mingxin, REN Hongbo, et al. Research progress on optimal design of multi-energy complementary distributed energy system[J]. Journal of Shanghai University of Electric Power, 2018,34(3):229-235. | |
[11] | 荆有印, 白鹤, 张建良. 太阳能冷热电联供系统的多目标优化设计与运行策略分析[J]. 中国电机工程学报, 2012,32(20):82-87,143. |
JING Youyin, BAI He, ZHANG Jianliang. Multi-objective optimization design and operation strategy analysis of solar energy combined cooling, heating and power system[J]. Proceedings of the Chinese Society of Electrical Engineering, 2012,32(20):82-87,143. | |
[12] | 柳川, 王宇拓, 王林川, 等. 含冷热电联供系统微电网优化运行研究[J]. 电测与仪表, 2015,52(2):31-37. |
LIU Chuan, WANG Yutuo, WANG Linchuan, et al. Research on optimal operation of microgrid containing cooling, heating and power system[J]. Electrical Measurement & Instrumentation, 2015,52(2):31-37. | |
[13] | 赖中练. 热电冷联产系统准稳态模拟[D]. 北京: 清华大学, 2009. |
[14] | LIU P, GEROGIORGIS D I, PISTIKOPOULOS E N. Modeling and optimization of polygeneration energy systems[J]. Catalysis Today, 2009,127(1):347-359. |
[15] | 孙宏斌, 潘昭光, 郭庆来. 多能流能量管理研究: 挑战与展望[J]. 电力系统自动化, 2016,40(15):1-8. |
SUN Hongbin, PAN Zhaoguang, GUO Qinglai. Research on multi-energy flow energy management: Challenges and prospects[J]. Automation of Electric Power Systems, 2016,40(15):1-8. | |
[16] | 孙浩, 陈永华. 综合能源系统多能流联合仿真技术研究[J]. 华电技术, 2020,42(5):66-72. |
SUN Hao, CHEN Yonghua. Research on multiple energy flow co-simulation technology applied in integrated energy system[J]. Huadian Technology, 2020,42(5):66-72. | |
[17] | 熊京. 多能互补微网系统的优化设计及控制技术[D]. 北京:华北电力大学, 2016. |
[18] | 陈昌松, 段善旭, 蔡涛, 等. 基于改进遗传算法的微网能量管理模型[J]. 电工技术学报, 2013,28(4):196-201. |
CHEN Changsong, DUAN Shanxu, CAI Tao, et al. Microgrid energy management model based on improved genetic algorithm[J]. Journal of Electrotechnical Technology, 2013,28(4):196-201. | |
[19] | 丁伯剑, 郑秀玉, 周逢权, 等. 微电网多能互补电源容量配置方法研究[J]. 电力系统保护与控制, 2013,41(16):144-148. |
DING Bojian, ZHENG Xiuyu, ZHOU Fengquan, et al. Research on capacity configuration method of multi-energy complementary power supply in microgrid[J]. Power System Protection and Control, 2013,41(16):144-148. | |
[20] | 肖浩. 微网能量管理与协调控制策略研究[D]. 北京:中国科学院大学, 2015. |
[21] | 赵冉娇. 多能互补微电网的能量管理研究[D]. 西安:西安理工大学, 2015. |
[22] | 郭力, 刘文健, 焦冰琦, 等. 独立微网系统的多目标优化规划设计方法[J]. 中国电机工程学报, 2014,34(4):524-536. |
GUO Li, LIU Wenjian, JIAO Bingqi, et al. Multi-objective optimization planning design method of independent microgrid system[J]. Proceedings of the Chinese Society of Electrical Engineering, 2014,34(4):524-536. | |
[23] | 陈亚红. 微电网能量管理策略研究[D]. 哈尔滨:哈尔滨工业大学, 2016. |
[24] | 章文浦, 王强钢. 基于遗传算法的分布式多能互补能源系统优化配置[J]. 华电技术, 2021,43(1):52-58. |
ZHANG Wenpu, WANG Qianggang. Optimized allocation of multi-energy complementary distributed energy system based on genetic algorithm[J]. Huadian Technology, 2021,43(1):52-58. |
[1] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[2] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
[3] | ZHENG Qingming, JING Yanwei, LIANG Tao, CHAI Lulu, LYU Liangnian. Optimized scheduling on large-scale hydrogen production system for off-grid renewable energy based on DDPG algorithm [J]. Integrated Intelligent Energy, 2024, 46(6): 35-43. |
[4] | YU Sheng, ZHOU Xia, SHEN Xicheng, DAI Jianfeng, LIU Zengji. Risk analysis on the source-grid-load-storage system affected by cyber attacks [J]. Integrated Intelligent Energy, 2024, 46(5): 41-49. |
[5] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
[6] | ZHONG Yongjie, WANG Zidong, ZUO Jianxun, WANG Changqing, LI Jingxia, JI Ling. Economic dispatch of multi-energy complementary systems considering multi-period scales and regional stratification [J]. Integrated Intelligent Energy, 2024, 46(4): 52-59. |
[7] | MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer [J]. Integrated Intelligent Energy, 2024, 46(4): 60-67. |
[8] | SUN Jian, ZHANG Yunfan, CAI Xiaolong, LIU Dingqun. Optimal scheduling of HVAC systems based on predicted loads [J]. Integrated Intelligent Energy, 2024, 46(3): 12-19. |
[9] | WANG Yongxu, ZHOU Tianyu, DENG Genggeng, XU Gang, WANG Zhuo. Plant-level intelligent operation optimization for cogeneration units equipped with absorption heat pumps [J]. Integrated Intelligent Energy, 2024, 46(3): 20-28. |
[10] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[11] | WEI Xikai, TAN Xiaoshi, LIN Ming, CHENG Junjie, XIANG Keqi, DING Shuxin. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035 [J]. Integrated Intelligent Energy, 2024, 46(3): 72-78. |
[12] | LU Wentian. Increment-exchange-based decentralized multi-objective optimal power flow algorithm for active distribution grids [J]. Integrated Intelligent Energy, 2024, 46(2): 43-48. |
[13] | KONG Huichao, WANG Wenzhong, LEI Yi, PENG Jing, LI Haibo. Electric power and energy rebalancing method for new power systems at receiving ends of industrial parks [J]. Integrated Intelligent Energy, 2024, 46(2): 68-74. |
[14] | TAN Jiuding, LI Shuaibing, LI Mingche, MA Xiping, KANG Yongqiang, DONG Haiying. Optimized scheduling of the power grid with participation of distributed microgrids considering their uncertainties [J]. Integrated Intelligent Energy, 2024, 46(1): 38-48. |
[15] | FANG Gang, WANG Jing, ZHANG Bobo, WANG Junzhe. Research on optimization algorithm of industrial park microgrid configuration based on Pareto solution set [J]. Integrated Intelligent Energy, 2024, 46(1): 49-55. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||