Integrated Intelligent Energy ›› 2024, Vol. 46 ›› Issue (3): 20-28.doi: 10.3969/j.issn.2097-0706.2024.03.003
• Intelligent & Clean Heat Supply • Previous Articles Next Articles
WANG Yongxu1(), ZHOU Tianyu2, DENG Genggeng2, XU Gang2,*(
), WANG Zhuo3
Received:
2023-08-17
Revised:
2023-09-21
Published:
2024-03-25
Contact:
XU Gang
E-mail:nmtlwyx0@163.com;xgncepu@163.com
Supported by:
CLC Number:
WANG Yongxu, ZHOU Tianyu, DENG Genggeng, XU Gang, WANG Zhuo. Plant-level intelligent operation optimization for cogeneration units equipped with absorption heat pumps[J]. Integrated Intelligent Energy, 2024, 46(3): 20-28.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2024.03.003
Table 1
Common design parameters of heating units
参数 | 湿冷机组 (#1— #4) | 空冷机组 (#5) |
---|---|---|
数量/台 | 4 | 1 |
额定发电功率/MW | 220 | 600 |
主蒸汽压力/MPa | 12.75 | 16.70 |
主蒸汽温度/℃ | 535 | 537 |
额定主蒸汽流量/(t·h-1) | 642.22 | 1 845.97 |
再热蒸汽压力/MPa | 2.27 | 3.23 |
再热蒸汽温度/℃ | 535 | 537 |
额定再热蒸汽流量/(t·h-1) | 566.58 | 1 540.50 |
排汽压力/MPa | 0.005 2 | 0.013 0 |
热泵驱动蒸汽压力/MPa | 0.3 | |
热网水流量/(t·h-1) | 1 300 | |
热泵乏汽压力/kPa | 20 | |
热泵性能系数 | 1.7 | |
热网水进/出口温度/℃ | 85/110 | 55/85 |
[1] | 王超, 孙福全, 许晔, 等. 乌克兰危机下的全球能源格局变化及能源科技发展新特点[J]. 中国科学院院刊, 2023, 38(6):875-886. |
WANG Chao, SUN Fuquan, XU Ye, et al. Changes in global energy landscape and new developments in energy science and technology amid Ukraine crisis[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(6): 875-886. | |
[2] | 邹洋, 王剑晓, 戴璟, 等. 欧洲能源危机成因、影响与应对措施[J/OL]. 电力系统自动化:1-13(2023-07-17) [2023-08-10]. http://kns.cnki.net/kcms/detail/32.1180.TP.20230714.1617.006.html. |
ZOU Yang, WANG Jianxiao, DAI Jing, et al. Cause, impacts and mitigation measures of European energy crisis[J/OL]. Automation of Electric Power Systems:1-13(2023-07-17) [2023-08-10]. . | |
[3] |
王开亭, 李小斌, 张红娜, 等. 集中供热系统中应用湍流减阻剂的节能减排综合性能评价[J]. 综合智慧能源, 2022, 44(9):40-50.
doi: 10.3969/j.issn.2097-0706.2022.09.006 |
WANG Kaiting, LI Xiaobin, ZHANG Hongna, et al. Comprehensive evaluation for energy saving and emission reduction performance of turbulent drag reducing agent in heating systems[J]. Integrated Intelligent Energy, 2022, 44(9):40-50.
doi: 10.3969/j.issn.2097-0706.2022.09.006 |
|
[4] |
孙健, 王寅武, 吴可欣, 等. 综合能源系统中热泵技术研究与应用[J]. 综合智慧能源, 2023, 45(4):1-11.
doi: 10.3969/j.issn.2097-0706.2023.04.001 |
SUN Jian, WANG Yinwu, WU Kexin, et al. Research and application of heat pump technology in integrated energy systems[J]. Integrated Intelligent Energy, 2023, 45(4):1-11.
doi: 10.3969/j.issn.2097-0706.2023.04.001 |
|
[5] | 陈家伦, 蒋欢春, 卞韶帅, 等. 660 MW梯级供热机组耦合电锅炉运行优化[J]. 中国电力, 2022, 55(5):189-195. |
CHEN Jialun, JIANG Huanchun, BIAN Shaoshuai, et al. Study on operating optimization of 660 MW multi-stage heating unit combined with electric boiler[J]. Electric Power, 2022, 55(5):189-195. | |
[6] | 王珊, 刘明, 严俊杰. 采用粒子群算法的热电厂热电负荷分配优化[J]. 西安交通大学学报, 2019, 53(9):159-166. |
WANG Shan, LIU Ming, YAN Junjie. Optimizing heat-power load distribution of thermal power plants based on particle swarm algorithm[J]. Journal of Xi'an Jiaotong University, 2019, 53(9):159-166. | |
[7] | 王明春, 胥建群. 50 MW供热机组在线运行优化管理系统[J]. 汽轮机技术, 2004, 46(5):397-399. |
WANG Mingchun, XU Jianqun. Online optimizing management system for 50 MW thermal power generating unit[J]. Turbine Technology, 2004, 46(5):397-399. | |
[8] | 戈志华, 陈玉勇, 李沛峰, 等. 基于当量抽汽压力的大型热电联产供热模式研究[J]. 动力工程学报, 2014, 34(7):569-575. |
GE Zhihua, CHEN Yuyong, LI Peifeng, et al. Research on large-scale cogeneration heating mode based on equivalent steam extraction pressure[J]. Chinese Journal of Power Engineering, 2014, 34(7): 569-575. | |
[9] | 李岩, 米培源, 李文涛, 等. 大型机组乏汽余热利用的热电联产供热系统全工况优化[J]. 中国电机工程学报, 2018, 38(16):4815-4822,4987. |
LI Yan, MI Peiyuan, LI Wentao, et al. Full operating conditions optimization of cogeneration heating system based on waste heat utilization of exhausted steam of large turbine units[J]. Proceedings of the CSEE, 2018, 38(16):4815-4822,4987. | |
[10] | 齐敏芳, 李晓恩, 刘潇, 等. 基于大数据的燃煤机组供电煤耗特性分析[J]. 热力发电, 2019, 48(9):51-57. |
QI Minfang, LI Xiaoen, LIU Xiao, et al. Characteristics analysis of power supply coal consumption for coal-fired power units based on big data[J]. Thermal Power Generation, 2019, 48(9): 51-57. | |
[11] | 金宏伟, 徐云柯, 邵建宇, 等. 基于大数据分析的汽轮机缸效劣化研究[J]. 山东电力技术, 2022, 49(7):68-73. |
JIN Hongwei, XU Yunke, SHAO Jianyu, et al. Research on the deterioration of turbine cylinder efficiency based on data analysis[J]. Shandong Electric Power, 2022, 49(7):68-73. | |
[12] | 彭维珂, 聂椿明, 陈衡, 等. 基于智能算法的空冷火电机组负荷预测研究[J]. 华电技术, 2021, 43(3):57-64. |
PENG Weike, NIE Chunming, CHEN Heng, et al. Study on load forecasting for air cooling thermal power units based on intelligent algorithm[J]. Huadian Technology, 2021, 43(3):57-64. | |
[13] |
张少凤, 张清勇, 杨叶森, 等. 基于滑动窗口和LSTM神经网络的锂离子电池建模方法[J]. 储能科学与技术, 2022, 11(1):228-239.
doi: 10.19799/j.cnki.2095-4239.2021.0373 |
ZHANG Shaofeng, ZHANG Qingyong, YANG Yesen, et al. Lithium-ion battery model based on sliding window and long short term memory neural network[J]. Energy Storage Science and Technology, 2022, 11(1):228-239.
doi: 10.19799/j.cnki.2095-4239.2021.0373 |
|
[14] | 张学镭, 陈海平. 回收循环水余热的热泵供热系统热力性能分析[J]. 中国电机工程学报, 2013, 33(8):1-8,15. |
ZHANG Xuelei, CHEN Haiping. Thermodynamic analysis of heat pump heating supply systems with circulating water heat recovery[J]. Proceedings of the CSEE, 2013, 33(8):1-8,15. | |
[15] | 曾广彪. 工业用溴化锂吸收式热泵部分负荷性能及主动调控研究[D]. 北京: 清华大学, 2016. |
ZENG Guangbiao. Research on partial load performance and active control of industrial lithium bromide absorption heat pump[D]. Beijing: Tsinghua University, 2016. | |
[16] |
周家辉, 邓庚庚, 汪茹康, 等. 配置吸收式热泵的余压梯级利用供热系统优化设计[J]. 动力工程学报, 2023, 43(2):165-173.
doi: 10.19805/j.cnki.jcspe.2023.02.007 |
ZHOU Jiahui, DENG Genggeng, WANG Rukang, et al. Optimal design of heat supply system with cascade utilization of residual pressure with absorption heat pump[J]. Journal of Chinese Society of Power Engineering, 2023, 43(2):165-173.
doi: 10.19805/j.cnki.jcspe.2023.02.007 |
|
[17] |
李蔚, 杨存辉, 吴国林, 等. 热电联产机组耦合吸收式热泵运行特性的研究[J]. 动力工程学报, 2023, 43(7):951-958.
doi: 10.19805/j.cnki.jcspe.2023.07.018 |
LI Wei, YANG Cunhui, WU Guolin, et al. Research on operating characteristics of coupled absorption heat pump for cogeneration units[J]. Journal of Chinese Society of Power Engineering, 2023, 43(7):951-958.
doi: 10.19805/j.cnki.jcspe.2023.07.018 |
|
[18] | 撒卫华. 溴化锂第一类吸收式热泵的研究及应用[J]. 洁净与空调技术, 2010(2):21-24. |
SA Weihua. The research and application of type Ⅰ lithium bromide absorption heat pump[J]. Contamination Control & Air-Conditioning Technology, 2010(2):21-24. |
[1] | SUN Jian, ZHANG Yunfan, CAI Xiaolong, LIU Dingqun. Optimal scheduling of HVAC systems based on predicted loads [J]. Integrated Intelligent Energy, 2024, 46(3): 12-19. |
[2] | SUN Jian, QIN Yu, HAO Junhong, YANG Yongping. Performance analysis on high temperature air source heat pump coupling cycle based on industrial waste heat [J]. Integrated Intelligent Energy, 2023, 45(7): 40-47. |
[3] | LI Jing, DOU Zhenlan, WANG Jiaxiang, ZHANG Chunyan, LU Tao, NI Yaobing. Research on power distribution strategy of an RSOC-based wind-photovoltaic-hydrogen energy system [J]. Integrated Intelligent Energy, 2023, 45(7): 78-86. |
[4] | LIU Ziqi, SU Tingting, HE Jiayang, WANG Yu. Research on the optimal allocation of energy storage in distribution network based on multi-objective particle swarm optimization algorithm [J]. Integrated Intelligent Energy, 2023, 45(6): 9-16. |
[5] | SUN Jian, QIN Yu, WANG Yinwu, WU Kexin, HAO Junhong, YANG Yongping. Study on the performance of new air-source high-temperature hot water units driven by heat supply network in integrated energy systems [J]. Integrated Intelligent Energy, 2022, 44(7): 33-39. |
[6] | WANG Xin, CHEN Zucui, BIAN Zaiping, WANG Yeyao, WU Yumiao. Optimal allocation of a wind‒PV‒battery hybrid system in smart microgrid based on particle swarm optimization algorithm [J]. Integrated Intelligent Energy, 2022, 44(6): 52-58. |
[7] | ZHANG Aiping, ZHAO Lixing, LIU Jing. Research on optimized operation of building-type integrated energy service systems [J]. Integrated Intelligent Energy, 2022, 44(2): 42-48. |
[8] | WU Junda, ZHAO Yi, SUN Wenyao. Carbon emission characteristics model of thermal power units for environmental economic dispatch [J]. Integrated Intelligent Energy, 2022, 44(11): 56-62. |
[9] | TAN Zhiling, CHEN Caiming, XU Shengchao, WU Zhihong, SONG Yin, WANG Pengfei. Research on service life prediction on rolling bearings based on vibration signal analysis [J]. Huadian Technology, 2021, 43(5): 36-44. |
[10] | CONG Xingliang, XIE Hong, SU Yang, ZHANG Jun, CHENG Yingjie. Experimental study on deep peak-load shaving of a 660 MW ultra-supercritical secondary reheating unit [J]. Huadian Technology, 2021, 43(5): 64-69. |
[11] | ZHAO Xin, ZHENG Wenyu, HOU Zhihua, CHEN Heng, XU Gang. Research on economic dispatch of multi-energy complementary system based on Particle Swarm Optimization [J]. Huadian Technology, 2021, 43(4): 14-20. |
[12] | FANG Xu, PENG Xuefeng, ZHANG Kai, MA Jingbang, ZHAO Ruixiang, WANG Jinxing. Development of heating retrofit using waste heat from coal-fired CHP system cold end [J]. Huadian Technology, 2021, 43(3): 48-56. |
[13] | ZHENG Lijuan, GUO Qiang, HU Xiang, GUAN Shan, LI Jixian. Research on comprehensive monitoring system for in-service states of prefabricated substations based on IoT information integration [J]. Huadian Technology, 2021, 43(1): 12-18. |
[14] | JIANG Yijun, WANG Liqun, MENG Haojie, PAN Huangping. Research of monitoring technology applied on ring network cabinet mechanical characteristics based on Internet of Things [J]. Huadian Technology, 2021, 43(1): 6-11. |
[15] |
WU Siming,TONG Jialin,WU Yueseng,QI Yong,SUN Wuyi.
Comprehensive upgrading reconstruction and performance analysis of a subcritical boiler |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||