Integrated Intelligent Energy ›› 2023, Vol. 45 ›› Issue (7): 40-47.doi: 10.3969/j.issn.2097-0706.2023.07.005
• Integrated Energy System • Previous Articles Next Articles
SUN Jian(), QIN Yu(
), HAO Junhong(
), YANG Yongping(
)
Received:
2023-05-26
Revised:
2023-06-25
Accepted:
2023-07-03
Published:
2023-07-25
Supported by:
CLC Number:
SUN Jian, QIN Yu, HAO Junhong, YANG Yongping. Performance analysis on high temperature air source heat pump coupling cycle based on industrial waste heat[J]. Integrated Intelligent Energy, 2023, 45(7): 40-47.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2023.07.005
[1] | 国际能源署. 《2021年世界能源展望》[R]. |
[2] | 国际能源署. 《2020年全球能源评论》[R]. |
[3] | 国际能源署. 《2018年世界能源展望》[R]. |
[4] | 陈彬, 杨延春, 张建海. 低温工业余热回收利用典型场景与应用案例[J]. 节能与环保, 2023, 342(1):87-88. |
CHEN Bin, YANG Yanchun, ZHANG Jianhai. Typical scenarios and application cases of waste heat recovery and utilization in low-temperature industry[J]. Energy Conservation and Environmental Protection, 2023, 342(1):87-88. | |
[5] | 夏建军. 流程工业余热资源及利用[J]. 可持续发展经济导刊, 2022, 34(4):30-31. |
XIA Jianjun. Waste heat resources and utilization of process industry[J]. Economic Guide for Sustainable Development, 2022, 34(4):30-31. | |
[6] | 余龙清, 马锋, 胡学伟. 低温工业余热综合利用[J]. 资源节约与环保, 2018, 197(4):13,17. |
YU Longqing, MA Feng, HU Xuewei. Comprehensive utilization of industrial waste heat at low temperature[J]. Journal of Resource Saving and Environmental Protection, 2018, 197(4):13,17. | |
[7] |
孙健, 王寅武, 吴可欣, 等. 综合能源系统中热泵技术研究与应用[J]. 综合智慧能源, 2023, 45(4):1-11.
doi: 10.3969/j.issn.2097-0706.2023.04.001 |
SUN Jian, WANG Yinwu, WU Kexin, et al. Research and Application of heat pump technology in integrated energy system[J]. Integrated Intelligent Energy, 2023, 45(4):1-11.
doi: 10.3969/j.issn.2097-0706.2023.04.001 |
|
[8] | 刘伟, 牛栓文, 徐涛, 等. 油田采出水驱动带经济器的高温压缩式热泵分析[J]. 工业加热, 2022, 51(9):15-19,23. |
LIU Wei, NIU Shuanwen, XU Tao, et al. Analysis of high temperature compression heat pump driven by oil field produced water with economizer[J]. Industrial Heating, 2022, 51(9):15-19,23. | |
[9] |
张俊博, 金旭, 刘忠彦, 等. 吸收式热泵余热回收先进技术综述[J]. 发电技术, 2020, 41(3):269-280.
doi: 10.12096/j.2096-4528.pgt.19170 |
ZHANG Junbo, JIN Xu, LIU Zhongyan, et al. Review of advanced technologies for waste heat recovery of absorption heat pumps[J]. Power Generation Technology, 2020, 41(3):269-280.
doi: 10.12096/j.2096-4528.pgt.19170 |
|
[10] | 马世财. 新型耦合热泵热力学循环特性研究[D]. 北京: 华北电力大学, 2022. |
MA Shicai. New coupling heat pump thermodynamic cycle characteristics research[D]. Beijing: North China Electric Power University, 2022. | |
[11] | 马振西, 刘凤国, 张蕊, 等. 燃气压缩式与双效吸收式耦合热泵的制冷性能[J]. 天津城建大学学报, 2020, 26(2):137-141,154. |
MA Zhenxi, LIU Fengguo, ZHANG Rui, et al. Refrigeration performance of gas compression coupled with dual-effect absorption heat pump[J]. Journal of Tianjin Urban Construction University, 2020, 26(2):137-141,154. | |
[12] | 孙健, 马世财, 霍成, 等. 新型吸收式与压缩式耦合循环性能研究[J]. 太阳能学报, 2020, 41(10):375-380. |
SUN Jian, MA Shicai, HUO Cheng, et al. Research on performance of novel absorption and compression coupling cycles[J]. Acta Solar Energy Sinica, 2019, 41(10):375-380. | |
[13] |
ZHANG X, WANG R, XU Z. Air-source hybrid absorption-compression heat pumps with three-stage thermal coupling configuration for temperature lift over 150 ℃[J]. Energy Conversion and Management, 2022, 271:116304.
doi: 10.1016/j.enconman.2022.116304 |
[14] |
GAO J, XU Z, WANG R. An air-source hybrid absorption-compression heat pump with large temperature lift[J]. Applied Energy, 2021, 291:116810.
doi: 10.1016/j.apenergy.2021.116810 |
[15] | 孙健, 刘靖宇, 戈志华, 等. 基于三元混合工质高温压缩式热泵循环性能研究[J]. 工程热物理学报, 2020, 41(5):1043-1049. |
SUN Jian, LIU Jingyu, GE Zhihua, et al. Research on cycle performance of high temperature compression Heat pump based on ternary mixing medium[J]. Journal of Engineering Thermal Physics, 20, 41(5):1043-1049. | |
[16] | 安美燕, 赵心蕊, 徐震原, 等. 工业余热回收的耦合压缩-吸收式高温热泵循环[J]. 上海交通大学学报, 2021, 55(4):434-443. |
AN Meiyan, ZHAO Xinrui, XU Zhenyuan, et al. Coupling compression-absorption high temperature heat pump cycle for industrial waste heat recovery[J]. Journal of Shanghai Jiaotong University, 2021, 55(4):434-443. | |
[17] | 张冲, 张涛, 王光林. 基于吸收式-压缩式热泵耦合技术的热电厂余热回收系统研究[J]. 节能, 2019, 38(10):27-28. |
ZHANG Chong, ZHANG Tao, WANG Guanglin. Research on waste heat recovery system of thermal power plant based on absorption-compression heat pump coupling technology[J]. Energy Saving, 2019, 38(10):27-28. | |
[18] | 陈金峰. 太阳能吸收制冷与蒸汽压缩空调耦合循环机理与实验研究[D]. 上海: 上海交通大学, 2018. |
CHEN Jinfeng. Experimental study on the coupling cycle mechanism of solar absorption refrigeration and steam compression air conditioning[D]. Shanghai: Shanghai Jiaotong University, 2018. | |
[19] | 姜迎春. 回收低温烟气余热的吸收-压缩复合热泵系统集成与分析[D]. 北京: 中国科学院大学(中国科学院工程热物理研究所), 2017. |
JIANG Yingchun. Integration and analysis of absorption-compression combined heat pump system for recovering waste heat from low-temperature flue gas[D]. Beijing: University of Chinese Academy of Sciences (Institute of Engineering Thermophysics), 2017. | |
[20] |
XU Z, GAO J, HU B. Multi-criterion comparison of compression and absorption heat pumps for ultra-low grade waste heat recovery[J]. Energy, 2022, 238:121804.
doi: 10.1016/j.energy.2021.121804 |
[21] |
XIAO W, HAO Z, LIN C, et al. Simulation study of an open compression absorption heat pump in water and heat recovery of low-temperature and high-humidity flue gas[J]. Energy Conversion and Management, 2022, 269:116180.
doi: 10.1016/j.enconman.2022.116180 |
[22] |
WEI W, CHONG Z, SI H, et al. A hybrid H2O/IL absorption and CO2 compression air-source heat pump for ultra-low ambient temperatures[J]. Energy, 2022, 239:122180.
doi: 10.1016/j.energy.2021.122180 |
[23] |
QIANG J, HAN Z, ZHANG X, et al. Study on the heating performance of absorption-compression hybrid heat pump in severe cold regions[J]. Applied Thermal Engineering, 2021, 185:116419.
doi: 10.1016/j.applthermaleng.2020.116419 |
[24] |
GAO P, QING C, CHANG M, et al. Hybrid absorption-compression heat pump with two-stage rectification and subcooler[J]. Applied Thermal Engineering, 2020, 181:116027.
doi: 10.1016/j.applthermaleng.2020.116027 |
[25] |
ROSTAMZADEH H, NAMIN S, GHAEBI H, et al. Performance assessment and optimization of a humidification dehumidification (HDH) system driven by absorption-compression heat pump cycle[J]. Desalination, 2018, 447:84-101.
doi: 10.1016/j.desal.2018.08.015 |
[26] | 冯慧敏, 包睿祺, 刘舫辰, 等. 新型第二类溴化锂吸收压缩复合式热泵系统研究[J]. 能源与节能, 2019, 168(9):45-47. |
FENG Huimin, BAO Ruiqi, LIU Fangchen, et al. New type of the second type of lithium bromide absorption compressed composite heat pump system research[J]. Energy and Energy Conservation, 2019, 168(9):45-47. | |
[27] |
孙健, 秦宇, 王寅武, 等. 基于热网驱动的综合能源新型空气源高温热水机组性能研究[J]. 综合智慧能源, 2022, 44(7):33-39.
doi: 10.3969/j.issn.2097-0706.2022.07.004 |
SUN Jian, QIN Yu, WANG Yinwu, et al. Research on performance of new air source high temperature water heater with comprehensive energy based on heat network drive[J]. Integrated Intelligent Energy, 2022, 44(7):33-39.
doi: 10.3969/j.issn.2097-0706.2022.07.004 |
|
[28] | 聂东梅. 准二级压缩热泵干燥系统性能研究[D]. 绵阳: 西南科技大学, 2021. |
NIE Dongmei. Quasi secondary compression heat pump drying system performance study[D]. Mianyang: Southwest University of Science and Technology, 2021. | |
[29] | 王斌. 基于R134a-DMF工质对吸收式热泵的数值模拟和性能研究[D]. 济南: 山东建筑大学, 2022. |
WANG Bin. Numerical simulation and performance study of absorption heat pump based on R134a-DMF working medium[D]. Jinan: Shandong Construction University, 2022. | |
[30] | 马世财, 周少祥, 王寅武, 等. 基于吸收-压缩新型热泵循环变工况性能分析[J]. 华北电力大学学报(自然科学版), 2022, 49(4):105-112. |
MA Shicai, ZHOU Shaoxiang, WANG Yinwu, et al. Performance analysis of a new heat pump based on absorption-compression cycles[J]. Journal of North China Electric Power University(Natural Science Edition), 2022, 49(4):105-112. | |
[31] | 孙健, 霍成, 马世财, 等. 基于电动热泵的天然气锅炉余热深度回收研究[J]. 中国电机工程学报, 2022, 42(11):4060-4069. |
SUN Jian, HUO Cheng, MA Shicai, et al. Research on deep recovery of waste heat from natural gas boilers based on electric heat pump[J]. Proceedings of the CSEE, 2022, 42(11):4060-4069. | |
[32] | 孙健, 马世财, 霍成, 等. 烟气余热回收高温电动热泵混合工质性能研究[J]. 华北电力大学学报(自然科学版), 2021, 48(2):120-126. |
SUN Jian, MA Shicai, HUO Cheng, et al. Study on mixed working medium performance of high temperature electric heat pump with flue gas waste heat recovery[J]. Journal of North China Electric Power University(Natural Science Edition), 2021, 48(2):120-126. |
[1] | TANG Zihan, WANG Shuaijie, JU Zhenhe, LEI Zhiqi. Performance optimization of photovoltaic/thermal systems coupled with air source heat pumps [J]. Integrated Intelligent Energy, 2024, 46(4): 34-41. |
[2] | WANG Yongxu, ZHOU Tianyu, DENG Genggeng, XU Gang, WANG Zhuo. Plant-level intelligent operation optimization for cogeneration units equipped with absorption heat pumps [J]. Integrated Intelligent Energy, 2024, 46(3): 20-28. |
[3] | ZHANG Zhongping, LIU Heng, XIE Yurong, ZHAO Dazhou, MOU Min, CHEN Qiao. Application and research progress of molten salt heat storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 40-47. |
[4] | HAN Chaobing, TANG Bing, YIN Ruilin, ZHU Zhengxiang, XUE Minghua, ZHU Jianfei, AI Chunmei, SUN Li. Research on modeling and characteristic simulation of a typical integrated energy system [J]. Integrated Intelligent Energy, 2023, 45(6): 49-58. |
[5] | SUN Jian, QIN Yu, WANG Yinwu, WU Kexin, GE Zhihua. Study on the optimal temperature for flue gas waste heat recovery of the heat pump with new working fluid [J]. Integrated Intelligent Energy, 2023, 45(4): 19-25. |
[6] | ZHANG Siliang, QI Lintong, QU Haowei, ZANG Dehua, ZHOU Wenhan, WANG Lidi. Research on solar assisted air source heat pump heating systems [J]. Integrated Intelligent Energy, 2023, 45(12): 10-19. |
[7] | JI Mingda, GOU Yujun, ZHONG Xiaohui. Performance simulation and analysis on photovoltaic and photothermal integration system in Baiyin area [J]. Integrated Intelligent Energy, 2023, 45(12): 43-52. |
[8] | SUN Jian, QIN Yu, WANG Yinwu, WU Kexin, HAO Junhong, YANG Yongping. Study on the performance of new air-source high-temperature hot water units driven by heat supply network in integrated energy systems [J]. Integrated Intelligent Energy, 2022, 44(7): 33-39. |
[9] | YU Li, XU Jingjing, MA Lanfang, WANG Youtian. Case study on the integrated energy service project with newly installed heat pumps [J]. Integrated Intelligent Energy, 2022, 44(1): 72-79. |
[10] | GUO Puwei, PENG Yue, DENG Jingmin, LI Bingfa, ZHOU Xing, HU Yun, GUO Haiqiang, WANG Jinxing. Feasibility study on the coupling application of flue gas waste heat recovery and energy storage technology [J]. Huadian Technology, 2021, 43(9): 62-68. |
[11] | FANG Xu, PENG Xuefeng, ZHANG Kai, MA Jingbang, ZHAO Ruixiang, WANG Jinxing. Development of heating retrofit using waste heat from coal-fired CHP system cold end [J]. Huadian Technology, 2021, 43(3): 48-56. |
[12] | LI Na, YI Zuyao, BAI Yinlei. Review and prospect of advanced heat supply and intelligent power generation technologies [J]. Huadian Technology, 2021, 43(3): 31-39. |
[13] | MA Shuangchen,WU Kai,SUN Yao,LIU Chang,XING Haoru. Process schemes and fuzzy evaluation of moisture and waste heat recovery systems in coal-fired power plants #br# [J]. Huadian Technology, 2020, 42(3): 37-44. |
[14] | WANG Changjun, LIU Shuo, DING Xuefeng. The study on application of phase change energy storage technology in clean heating [J]. Huadian Technology, 2020, 42(11): 91-96. |
[15] | GAO Jun, WANG Xun. Discussion on the technical route of energy consumption reduction in clean gas-fired heating [J]. Huadian Technology, 2020, 42(11): 83-90. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||