Huadian Technology ›› 2021, Vol. 43 ›› Issue (9): 62-68.doi: 10.3969/j.issn.1674-1951.2021.09.008
• Configuration of Energy Storage Devices • Previous Articles Next Articles
GUO Puwei1, PENG Yue2, DENG Jingmin3, LI Bingfa3, ZHOU Xing3, HU Yun3, GUO Haiqiang3, WANG Jinxing4,*()
Received:
2021-05-17
Revised:
2021-06-09
Published:
2021-09-25
Contact:
WANG Jinxing
E-mail:wangruoguang860928@126.com
CLC Number:
GUO Puwei, PENG Yue, DENG Jingmin, LI Bingfa, ZHOU Xing, HU Yun, GUO Haiqiang, WANG Jinxing. Feasibility study on the coupling application of flue gas waste heat recovery and energy storage technology[J]. Huadian Technology, 2021, 43(9): 62-68.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.1674-1951.2021.09.008
[1] | 国家发展改革委,财政部,国家能源局, 等. 关于促进储能技术与产业发展的指导意见[R]. 2017. |
[2] | 周宏春, 李长征, 周春. 碳中和背景下能源发展战略的若干思考[J]. 中国煤炭, 2021, 47(5):1-6. |
ZHOU Hongchun, LI Changzheng, ZHOU Chun. Some thoughts on energy development strategy under the background of carbon neutrality[J]. China Coal, 2021, 47(5):1-6. | |
[3] | 喻小宝, 郑丹丹, 杨康, 等. 双碳”目标下能源电力行业的机遇与挑战[J]. 华电技术, 2021, 43(6):21-32. |
YU Xiaobao, ZHENG Dandan, YANG Kang, et al. Opportunities and challenges faced by energy and power industry with the goal of carbon neutrality and carbon peak[J]. Huadian Technology, 2021, 43(6):21-32. | |
[4] |
RIFFAT S B, ZHAO X, DOHERTY P S. Application of sorption heat recovery systems in heating appliances-feasibility study[J]. Applied Thermal Engineering, 2006, 26(1):46-55.
doi: 10.1016/j.applthermaleng.2005.04.015 |
[5] |
WESTERLUND L, HERMANSSON R, FAGERSTR M J. Flue gas purification and heat recovery:A biomass fired boiler supplied with an open absorption system[J]. Applied Energy, 2012, 96:444-450.
doi: 10.1016/j.apenergy.2012.02.085 |
[6] |
LAZZARIN R M L, LONGO G A, PICCININNI F. An open cycle absorption heat pump[J]. Heat Recovery Systems and CHP, 1992, 12(5):391-396.
doi: 10.1016/0890-4332(92)90060-U |
[7] |
WEI M L, YUAN W X, SONG Z J, et al. Simulation of a heat pump system for total heat recovery from flue gas[J]. Applied Thermal Engineering, 2015, 86:326-332.
doi: 10.1016/j.applthermaleng.2015.04.061 |
[8] |
YE B C, LIU J, XU X G, et al. A new open absorption heat pump for latent heat recovery from moist gas[J]. Energy Conversion and Management, 2015, 94:438-446.
doi: 10.1016/j.enconman.2015.02.001 |
[9] | SUN G T, LIU Y F, DONG S L, et al. Study on novel molten salt-ceramics composite as energy storage material[J/OL]. The Journal of Energy Storage.(2020-01-31)[2021-06-05]. https://doi.org/10.1016/j.est.2020.101237 . |
[10] |
PARSIMEHR H, EHSANI A. Corn-based Electrochemical Energy Storage Devices[J]. The Chemical Record, 2020, 20(10):1163-1180.
doi: 10.1002/tcr.v20.10 |
[11] |
KOHLER T, MULLER K. Influence of different adsorbates on the efficiency of thermochemical energy storage[J]. Energy Science and Engineering, 2017, 5(1):21-29.
doi: 10.1002/ese3.2017.5.issue-1 |
[12] |
WANG H R, WANG L Q, WANG X B, et al. A novel pumped hydro combined with compressed air energy storage system[J]. Energies, 2013, 6(3):1554-1567.
doi: 10.3390/en6031554 |
[13] | 白凤臣, 马文姝, 宋海江. 燃气锅炉烟气余热回收潜力及影响因素分析[J]. 工业锅炉, 2019(3):5-9,13. |
BAI Fengchen, MA Wenshu, SONG Haijiang. Recovery potential and influencing factors of flue gas waste heat in gas-fired boilers[J]. Industrial Boilers, 2019(3):5-9,13. | |
[14] |
HORST T A, TEGETHOFF W, EILTS P, et al. Prediction of dynamic rankine cycle waste heat recovery performance and fuel saving potential in passenger car applications considering interactions with vehicle's energy management[J]. Energy Conversion and Management, 2014, 78:438-451.
doi: 10.1016/j.enconman.2013.10.074 |
[15] |
VELEZ F, CHEJNE F, ANTOLIN G, et al. Theoretical analysis of a transcritical power cycle for power generation from waste energy at low temperature heat source[J]. Energy Conversion and Management, 2012, 60:188-195.
doi: 10.1016/j.enconman.2012.01.023 |
[16] | 陈珣, 徐曙, 杨益, 等. 660 MW燃煤发电机组烟气余热梯级利用系统性能分析与优化[J]. 热能动力工程, 2021, 36(3):1-12. |
CHEN Xun, XU Shu, YANG Yi, et al. Performance analysis and optimization for the flue gas waste heat cascade utilization system of 660 MW coal-fired generating unit[J]. Journal of Engineering for Thermal Energy and Power, 2021(3):1-12. | |
[17] |
WANG C J, HE B S, SUN S Y, et al. Application of a low pressure economizer for waste heat recovery from the exhaust flue gas in a 600 MW power plant[J]. Energy, 2012, 48(1):196-202.
doi: 10.1016/j.energy.2012.01.045 |
[18] | STEVANOVIC V D, PETROVIC M M, WALA T, et al. Efficiency and power upgrade at the aged lignite-fired power plant by flue gas waste heat utilization: High pressure versus low pressure economizer installation [J/OL]. Energy(2019-08-21)[2021-06-05]. https://doi.org/10.1016/j.energy.2019.115980 . |
[19] |
XU G, XU C, YANG Y P, et al. A novel flue gas waste heat recovery system for coal-fired ultra-supercritical power plants[J]. Applied Thermal Engineering, 2014, 67(1-2):240-249.
doi: 10.1016/j.applthermaleng.2014.03.038 |
[20] |
YAN M, ZHANG L, SHI Y T, et al. A novel boiler cold-end optimisation system based on bypass flue in coal-fired power plants:Heat recovery from wet flue gas[J]. Energy, 2018, 152:84-94.
doi: 10.1016/j.energy.2018.03.129 |
[21] |
YANG Y P, XU C, XU G, et al. A new conceptual cold-end design of boilers for coal-fired power plants with waste heat recovery[J]. Energy Conversion and Management, 2015, 89:137-146.
doi: 10.1016/j.enconman.2014.09.065 |
[22] | LIU J Y, GONG X Y, ZHANG W H, et al. Experimental study on a flue gas waste heat cascade recovery system under variable working conditions [J]. Energies(2020-01-09)[2021-06-05]. https://doi.org/10.3390/en13020324 . |
[23] | LIU J Y, SUN F Z. Experimental study on operation regulation of a coupled high-low energy flue gas waste heat recovery system based on exhaust gas temperature control [J/OL]. Energies(2019-08-21)[2021-06-05]. https://doi.org/10.3390/en12040706 . |
[24] | 肖卓楠, 高文彬, 王金波, 等. 电厂烟风系统不同形式余热利用的经济性分析[J]. 锅炉技术, 2020, 51(2):57-63. |
XIAO Zhuonan, GAO Wenbin, WANG Jinbo, et al. Economic analysis of waste heat utilization in air-flue gas system[J]. Boiler Technology, 2020, 51(2):57-63. | |
[25] | 江婷, 徐静静, 马琴, 等. 分布式能源系统低温烟气余热利用经济性分析[J]. 华电技术, 2019, 41(5):46-49. |
JIANG Ting, XU Jingjing, MA Qin, et al. Economic analysis of low temperature flue gas waste heat utilization in distributed energy system[J]. Huadian Technology, 2019, 41(5):46-49. | |
[26] | 王明爽. 直彭式热泵型烟气余热回收系统试验研究[D]. 北京:北京建筑大学. 2019. |
[27] | AKHIL A A, HUFF G, CURRIER A B, et al. DOE/EPRI electricity storage handbook in collaboration with NRECA [EB/OL].(2015-02-01)[2021-06-05]. https://doi.org/10.2172/1170618 . |
[28] |
KOUSKSOU T, BRUEL P, JAMIL A, et al. Energy storage:Application and challenges[J]. Solar Energy Materials and Solar Cells, 2014, 120:59-80.
doi: 10.1016/j.solmat.2013.08.015 |
[29] | 李斌, 陈吉玲, 李晨昕, 等. 压缩空气储能系统与火电机组的耦合方案研究[J]. 动力工程学报, 2021, 41(3):244-250. |
LI Bin, CHEN Jiling, LI Chenxin, et al. Research on coupling scheme of a compressed air energy storage system and thermal power unit[J]. Journal of Chinese Society of Power Engineering, 2021, 41(3):244-250. | |
[30] | 魏书洲, 李兵发, 孙晨阳, 等. 压缩空气储能技术及其耦合发电机组研究进展[J]. 华电技术, 2021, 43(7):9-16. |
WEI Shuzhou, LI Bingfa, SUN Chenyang, et al. Research progress of compressed air energy storage and its coupling power generation[J]. Huadian Technology, 2021, 43(7):9-16. | |
[31] | STRAHAN D. Liquid air technologies:A guide to potential[M]. UK:Liquid Air Energy Network, 2013. |
[32] |
ANEKE M, WANG M. Process analysis of pressurized oxy-coal power cycle for carbon capture application integrated with liquid air power generation and binary cycle engines[J]. Applied Energy, 2015, 154:556-566.
doi: 10.1016/j.apenergy.2015.05.030 |
[33] | ZACH K, AUER H, LETTNER G. Facilitating energy storage to allow high penetration of intermittent renewable energy [DB/OL].(2013-02-20)[2021-06-05]. https://www.store-project.eu/uploads/docs/presentation-at-eurelectric-hydro-wg-by-thomas-maidonis.pdf . |
[34] | REDMAN C. Liquid air energy storage [EB/OL].(2015-05-23)[2021-06-05]. https://energyvulture.com/2015/05/23/liquid-air-energy-storage . |
[35] | TOMLINSON J J, KANNBERG L D, 施国威. 热能储存[J]. 世界科学, 1991, 12:34-36. |
[36] |
CHEN H S, CONG T N, YANG W, et al. Progress in electrical energy storage system:A critical review[J]. Progress in Natural Science:Materials International, 2008, 19(3):291-312.
doi: 10.1016/j.pnsc.2008.07.014 |
[37] | 李毅妮, 王韶旭, 张施慧. 二十烷@二氧化硅复合相变储能材料的热化学性能[J]. 大连交通大学学报, 2014, 35(S1):161-165. |
LI Yini, WANG Shaoxu, ZHANG Shihui. Thermal properties of n-eicosane@silicon dioxide compositesas phase change materials for heat enrgy storage[J]. Journal of Dalian Jiaotong University, 2014, 35(S1):161-165. | |
[38] | 李进, 王峰, 张世广, 等. 四元硝酸盐/MCM41多孔复合蓄热材料的制备及稳定性研究[J]. 华电技术, 2020, 42(4):17-22. |
LI Jin, WANG Feng, ZHANG Shiguang, et al. Study on preparation for quaternary nitrates/MCM41 porous composite heat-storage material and its stability[J]. Huadian Technology, 2020, 42(4):17-22. | |
[39] | NAKHAMKIN M, WOLK R, LINDEN S, et al. New compressed air energy storage concept improves the profitability of existing simple cycle,cyclecombined,wind energy,and landfill gas power plants[C]// ASME Conference.Vienna, 2004:103-110. |
[40] |
GUO H, XU Y J, CHEN H S, et al. Thermodynamic characteristics of a novel supercritical compressed air energy storage system[J]. Energy Conversion and Management, 2016, 115:167-177.
doi: 10.1016/j.enconman.2016.01.051 |
[41] | 刘佳. 超临界空气蓄热蓄冷数值与试验研究[D]. 北京:中国科学院工程热物理研究所, 2012. |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | TANG Zihan, WANG Shuaijie, JU Zhenhe, LEI Zhiqi. Performance optimization of photovoltaic/thermal systems coupled with air source heat pumps [J]. Integrated Intelligent Energy, 2024, 46(4): 34-41. |
[3] | WANG Yongxu, ZHOU Tianyu, DENG Genggeng, XU Gang, WANG Zhuo. Plant-level intelligent operation optimization for cogeneration units equipped with absorption heat pumps [J]. Integrated Intelligent Energy, 2024, 46(3): 20-28. |
[4] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
[5] | MENG Qiang, YANG Yang, XIONG Yaxuan. Study on thermal stability of molten salt composites added with SiO2 nanoparticles [J]. Integrated Intelligent Energy, 2023, 45(9): 32-39. |
[6] | XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development [J]. Integrated Intelligent Energy, 2023, 45(9): 48-58. |
[7] | LIU Tianyang, GAO Yajing, XIE Dian, ZHAO Liang. Analysis on the construction path of functional zero-carbon parks [J]. Integrated Intelligent Energy, 2023, 45(8): 44-52. |
[8] | TENG Jialun, LI Hongzhong. Analysis on development and key technologies of integrated intelligent energy in the context of carbon neutrality [J]. Integrated Intelligent Energy, 2023, 45(8): 53-63. |
[9] | HU Kaiyong, LIU Feng, WU Xiujie, HU Yunqing, ZHENG Yi, TIAN Shen. Carbon-economy analysis on energy supply methods for rural buildings based on Trnsys energy consumption prediction [J]. Integrated Intelligent Energy, 2023, 45(8): 64-71. |
[10] | WANG Yongzhen, HAN Yibo, HAN Kai, HAN Juntao, SONG Kuo, ZHANG Lanlan. Researches on data center integrated energy systems based on knowledge graph [J]. Integrated Intelligent Energy, 2023, 45(7): 1-10. |
[11] | CAO Zilin, WANG Wenjing, ZHAO Wei, KANG Ligai, GAO Xiaofeng, YANG Yang, WANG Jinzhu. Research on optimal scheduling of distributed integrated energy systems in load-intensive areas considering demand response [J]. Integrated Intelligent Energy, 2023, 45(7): 11-21. |
[12] | LI Yizhe, WANG Dan, JIA Hongjie, ZHOU Tianshuo, CAO Yitao, ZHANG Shuai, LIU Jiawei. Diverse modeling methods for energy hubs in integrated energy systems and their typical applications [J]. Integrated Intelligent Energy, 2023, 45(7): 22-29. |
[13] | SUN Jian, QIN Yu, HAO Junhong, YANG Yongping. Performance analysis on high temperature air source heat pump coupling cycle based on industrial waste heat [J]. Integrated Intelligent Energy, 2023, 45(7): 40-47. |
[14] | HAN Chaobing, TANG Bing, YIN Ruilin, ZHU Zhengxiang, XUE Minghua, ZHU Jianfei, AI Chunmei, SUN Li. Research on modeling and characteristic simulation of a typical integrated energy system [J]. Integrated Intelligent Energy, 2023, 45(6): 49-58. |
[15] | LIU Jian, LIU Yuxin, ZHUANG Hanyu. Key technologies and construction practices of virtual power plants [J]. Integrated Intelligent Energy, 2023, 45(6): 59-65. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||