Integrated Intelligent Energy ›› 2022, Vol. 44 ›› Issue (7): 33-39.doi: 10.3969/j.issn.2097-0706.2022.07.004
• Integrated Energy System • Previous Articles Next Articles
SUN Jian(), QIN Yu, WANG Yinwu, WU Kexin, HAO Junhong, YANG Yongping(
)
Received:
2022-04-29
Revised:
2022-06-20
Published:
2022-07-25
CLC Number:
SUN Jian, QIN Yu, WANG Yinwu, WU Kexin, HAO Junhong, YANG Yongping. Study on the performance of new air-source high-temperature hot water units driven by heat supply network in integrated energy systems[J]. Integrated Intelligent Energy, 2022, 44(7): 33-39.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2022.07.004
[1] | 孙健, 马世财, 霍成, 等. 碳中和目标下热泵技术应用现状及前景分析[J]. 华电技术, 2021, 43(10):22-30. |
SUN Jian, MA Shicai, HUO Cheng, et al. Application analysis and prospect of heat pump technology under the goal of carbon neutrality[J]. Huadian Technology, 2021, 43(10):22-30. | |
[2] | 陈健勇, 李浩, 陈颖, 等. 空气源热泵空调技术应用现状及发展前景[J]. 华电技术, 2021, 43(11): 25-39. |
CHEN Jianyong, LI Hao, CHEN Ying, et al. Application status and perspectives of air-source heat pump air conditioning technology[J]. Huadian Technology, 2021, 43(11):25-39. | |
[3] | 清华大学建筑节能研究中心. 中国建筑节能年度发展研究报告2008[M]. 北京: 中国建筑工业出版社. |
[4] | 熊军, 廖晔, 胡宪法, 等. 溴化锂吸收式热泵的动态建模及运行特性分析[J]. 热能动力工程, 2022, 37(2):122-128,159. |
XIONG Jun, LIAO Ye, HU Xianfa, et al. Dynamic modeling and operating characteristics analysis of lithium bromide absorption heat pump[J]. Thermal Power Engineering, 2022, 37(2):122-128,159. | |
[5] | 冯慧敏, 包睿祺, 刘舫辰, 等. 新型第二类溴化锂吸收压缩复合式热泵系统研究[J]. 能源与节能, 2019(9):45-47. |
FENG Huimin, BAO Ruiqi, LIU Fangchen, et al. Research on a new type II lithium bromide absorption compression composite heat pump system[J]. Energy and Energy Conservation, 2019(9):45-47. | |
[6] |
AYALA R, HEARD C, HOLLAND F. Ammonia/lithium nitrate absorption/compression refrigeration cycle.Part I. Simulation[J]. Applied Thermal Engineering, 1997, 17(3):223-233.
doi: 10.1016/S1359-4311(96)00042-7 |
[7] |
MITSUHIRO F, TADASHI Y, HIROAKI I, et al. Performance of compression/absorption hybrid refrigeration cycle with propane/mineral oil combination[J]. International Journal of Refrigeration, 2002, 25(7):907-915.
doi: 10.1016/S0140-7007(01)00102-5 |
[8] | 王长庆. 溴化锂两级高温吸收式热泵及其设计[J]. 节能技术, 2000(1):6-8. |
WANG Changqing. Lithium bromide two-stage high-temperature absorption heat pump and its design[J]. Energy Saving Technology, 2000(1):6-8. | |
[9] | 姜秀华. 单双效结合运行的溴化锂第一类吸收式热泵[J]. 节能, 2009, 28(12):21-24,2. |
JIANG Xiuhua. Single and double effect combined operation of lithium bromide type I absorption heat pumps[J]. Energy Conservation, 2009, 28(12):21-24,2. | |
[10] | 张红岩, 夏克盛, 赵明海. 第一类溴化锂吸收式热泵最佳工作域[J]. 制冷技术, 2012, 32(4):46-50. |
ZHANG Hongyan, XIA Kesheng, ZHAO Minghai. Optimal working domain of the first type of lithium bromide absorption heat pump[J]. Refrigeration Technology, 2012, 32(4):46-50. | |
[11] | 米玉鸿, 冯林魁, 柏建华, 等. 亚临界热电联产机组耦合吸收式热泵系统热经济性及环境效益分析[J]. 热能动力工程, 2022, 37(4):94-99. |
MI Yuhong, FENG Linkui, BAI Jianhua, et al. Analysis of thermal economy and environmental benefits of coupled absorption heat pump system for subcritical cogeneration units[J]. Thermal Power Engineering, 2022, 37(4):94-99. | |
[12] | 薛小军, 侯智华, 张红昌, 等. 碳中和背景下燃气热电联产与地源热泵耦合替代燃气锅炉供热研究[J]. 动力工程学报, 2022, 42(4):359-364,386. |
XUE Xiaojun, HOU Zhihua, ZHANG Hongchang, et al. Study of gas-fired cogeneration with ground source heat pump coupling to replace gas boilers for heat supply in a carbon neutral context[J]. Journal of Power Engineering, 2022, 42(4):359-364,386. | |
[13] |
KOHLENBACH P, ZIEGLER F. A dynamic simulation model for transient absorption chiller performance. Part II: The model[J]. International Journal of Refrigeration, 2007, 31(2):226-233.
doi: 10.1016/j.ijrefrig.2007.06.010 |
[14] | 周勇, 魏航, 李永田, 等. 吸收式热泵能效分析及模拟研究[J]. 上海节能, 2021(11):1257-1262. |
ZHOU Yong, WEI Hang, LI Yongtian, et al. Energy efficiency analysis and simulation study of absorption heat pump[J]. Shanghai Energy Conservation, 2021(11):1257-1262. | |
[15] | 陈清, 王锡. 溴化锂吸收式热泵变设计工况分析[J]. 建筑热能通风空调, 2020, 39(3):49-53,11. |
CHEN Qing, WANG Xi. Analysis of variable design conditions of lithium bromide absorption heat pump[J]. Building Thermal Ventilation and Air Conditioning, 2020, 39(3):49-53,11. | |
[16] | 孙健, 戈志华, 杜小泽, 等. 一种高效工业余热回收变负荷冷热水机组制造技术:ZL201910089196.9[P]. 2019. |
[17] | 孙健, 马世财, 霍成, 等. 新型吸收式与压缩式耦合循环性能研究[J]. 太阳能学报, 2020, 41(10):375-380. |
SUN Jian, MA Shicai, HUO Cheng, et al. Performance study of a new coupled absorption and compression cycle[J]. Journal of Solar Energy, 2020, 41(10):375-380. | |
[18] | KLEIN S, NELLIS G. Thermodynamics[M]. England: Ambridge University Press, 2012. |
[19] | 孙健, 董小波, 戈志华, 等. 余热回收型高温热泵非共沸工质循环性能研究[J]. 工程热物理学报报, 2019, 40(9):1949-1957. |
SUN Jian, DONG Xiaobo, GE Zhihua, et al. Study on the performance of waste heat recovery type high temperature heat pump with non-azeotropic work cycle[J]. Journal of Engineering Thermophysics, 2019, 40(9):1949-1957. | |
[20] | 方旭, 彭雪风, 张凯, 等. 燃煤热电联产系统冷端余能供热改造研究进展[J]. 华电技术, 2021, 43(3):48-56. |
FANG Xu, PENG Xuefeng, ZHANG Kai, et al. Development of heating retrofit using waste heat from coal-fired CHP system cold end[J]. Huadian Technology, 2021, 43(3):48-56. | |
[21] |
余莉, 徐静静, 马兰芳, 等. 综合能源服务项目新增热泵系统的案例分析[J]. 综合智慧能源, 2022, 44(1):72-79.
doi: 10.3969/j.issn.2097-0706.2022.01.010 |
YU Li, XU Jingjing, MA Lanfang, et al. Case study on the integrated energy service project with newly installed heat pumps[J]. Integrated Intelligent Energy, 2022, 44(1):72-79.
doi: 10.3969/j.issn.2097-0706.2022.01.010 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||