Integrated Intelligent Energy ›› 2023, Vol. 45 ›› Issue (4): 74-80.doi: 10.3969/j.issn.2097-0706.2023.04.011
• OTechnology Exploration and Prospect • Previous Articles Next Articles
LIN Lianjie1, FAN Yi1,*(), LI Jing2, ZHAO Xudong2, LI Yunhai2
Received:
2022-10-22
Revised:
2023-03-28
Accepted:
2023-04-25
Published:
2023-04-25
Contact:
FAN Yi
E-mail:yifan0112@shiep.edu.cn
Supported by:
CLC Number:
LIN Lianjie, FAN Yi, LI Jing, ZHAO Xudong, LI Yunhai. Operation performance analysis on a novel solar heat recovery quasi two-stage compression heat pump system under typical weather conditions[J]. Integrated Intelligent Energy, 2023, 45(4): 74-80.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2023.04.011
Table 2
System control strategies
时间 | 运行模式 | 条件 | 控制详情 |
---|---|---|---|
白天 | 系统停滞 | 除了太阳能电池板阵列和热回收装置,整个系统停止运行(AD: a) | |
太阳能蓄热 | 收集到的太阳能从快速响应储热换热器的底部转移到上部,储存起来供以后使用(PL:1,6; AD: a) | ||
太阳能底部供热 | 收集的太阳能直接从快速响应储热换热器的底部用于空间加热(PL: 4; AD: a) | ||
太阳能蓄热与放热 | 收集到的太阳能被传输和储存到快速响应储热换热器的上部,同时系统从快速响应储热换热器的下部提供空间加热(PL: 4,1,6; AD: a) | ||
太阳能与热泵底部供热 | 来自太阳能集热器和热回收式准二级压缩热泵的热量同时加热快速响应储热换热器的底部,空间加热由快速响应储热换热器的底部提供(PL: 4,2,5;AD: b) | ||
太阳能和热泵加热 | 由于快速响应储热换热器底部温度较低,系统无法为居民提供空间供暖,采用太阳能集热器和热回收式准二级压缩热泵同时对快速响应储热换热器底部进行加热(PL: 2,5;AD: b) | ||
家庭热水采暖 | 家用热水加热控制策略不与其他系统组件相关联,仅在白天模式下由快速响应储热换热器底部温度控制 | ||
夜间 | 系统停止 | 除热回收装置外,整个系统停止(AD: a) | |
储能供热 | 在夜间模式下,快速响应储热换热器上部储存的热量优先用于提供空间供暖(PL: 3;AD: a) | ||
热泵运行 | 由于快速响应储热换热器底部温度较低,系统无法为居民提供空间供暖,采用热回收式准二级压缩热泵对快速响应储热换热器底部进行加热(PL: 2,5;AD: b) | ||
热泵底部供热 | 热回收式准二级压缩热泵用于加热快速响应储热换热器的底部部分;同时,系统从快速响应储热换热器底部提供空间加热(PL: 4,2,5;AD: b) | ||
底部供暖 | 该系统从快速响应储热换热器的底部提供空间加热(PL: 4;AD: b) |
[1] |
ZHANG H, ZHAO H, LI Z. Waste heat recovery and water-saving modification for a water-cooled gas-steam combined cycle cogeneration system with absorption heat pump[J]. Energy Conversion and Management, 2019, 180:1129-1138.
doi: 10.1016/j.enconman.2018.11.051 |
[2] |
SHAH S K, AYE L, RISMANCHI B. Multi-objective optimisation of a seasonal solar thermal energy storage system for space heating in cold climate[J]. Applied Energy, 2020, 268: 115047.
doi: 10.1016/j.apenergy.2020.115047 |
[3] |
NI L, DONG J, YAO Y, et al. A review of heat pump systems for heating and cooling of buildings in China in the last decade[J]. Renewable Energy, 2015, 84:30-45.
doi: 10.1016/j.renene.2015.06.043 |
[4] |
WANG X, LI C, SHANG J, et al. Strategic choices of China's new energy vehicle industry: An analysis based on ANP and SWOT[J]. Energies, 2017, 10(4): 1-27.
doi: 10.3390/en10010001 |
[5] |
WALLIN J, MADANI H, CLAESSON J. Run-around coil ventilation heat recovery system:A comparative study between different system configurations[J]. Applied Energy, 2012, 90 (1):258-265.
doi: 10.1016/j.apenergy.2011.05.012 |
[6] | GAO X, ZHANG J, ZHENG L, et al. Heating and Refrigeration through residual heating from investment casting process based on heat pump[J]. Special Casting & Non-ferrous Alloys, 2011, 31 (12):1131-1133. |
[7] |
MARINELLI S, LOLLI F, GAMBERINI R, et al. Life Cycle Thinking (LCT) applied to residential heat pump systems: A critical review[J]. Energy and Buildings, 2019, 185: 210-223.
doi: 10.1016/j.enbuild.2018.12.035 |
[8] |
CUI C, ZHANG X, CAI W. An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model[J]. Applied Energy, 2020, 264: 114734.
doi: 10.1016/j.apenergy.2020.114734 |
[9] | MOIÀ-POL A, PUJOL-NADAL R, MARTÍNEZ-MOLL V, et al. Study case of solar thermal and photovoltaic heat pump system for different cities in Turkey[C]// 11th ISES EuroSun Conference. Palma, 2016:762-766. |
[10] |
LIANG R B, ZHOU C, ZHANG J L, et al. Characteristics analysis of the photovoltaic thermal heat pump system on refrigeration mode: An experimental investigation[J]. Renewable Energy, 2020, 146: 2450-2461.
doi: 10.1016/j.renene.2019.08.045 |
[11] |
WU J Y, WANG R Z, XU Y X. Dynamic analysis of heat recovery process for a continuous heat recovery adsorption heat pump[J]. Energy Conversion and Management, 2002, 43(16):2201-2211.
doi: 10.1016/S0196-8904(01)00158-3 |
[12] | CHEN A X, CHEN Z, RAN C Y, et al. Application analysis on the heat recovery technology of heat pump in energy saving of air conditioning in the severe cold regions[C]// 4th International Conference on Renewable Energy and Environmental Technology (ICREET 2016). Atlantis Press, 2017: 174-179. |
[13] |
LIU Z B, LI W J, ZHANG L, et al. Experimental study and performance analysis of solar-driven exhaust air thermoelectric heat pump recovery system[J]. Energy and Buildings, 2019, 186:46-55.
doi: 10.1016/j.enbuild.2019.01.017 pmid: 32288119 |
[14] |
FAN Y, LI J, ZHAO X, et al. A proof-of-concept study of a novel ventilation heat recovery vapour injection air source heat pump[J]. Energy Conversion and Management, 2022, 256: 115404.
doi: 10.1016/j.enconman.2022.115404 |
[15] |
FAN Y, ZHAO X, LI G, et al. Analytical and experimental study of an innovative multiple-throughout-flowing micro-channel-panels-array for a solar-powered rural house space heating system[J]. Energy, 2019, 171: 566-580.
doi: 10.1016/j.energy.2019.01.049 |
[1] | ZHANG Zhongping, LIU Heng, XIE Yurong, ZHAO Dazhou, MOU Min, CHEN Qiao. Application and research progress of molten salt heat storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 40-47. |
[2] | SUN Jian, QIN Yu, HAO Junhong, YANG Yongping. Performance analysis on high temperature air source heat pump coupling cycle based on industrial waste heat [J]. Integrated Intelligent Energy, 2023, 45(7): 40-47. |
[3] | SUN Jian, QIN Yu, WANG Yinwu, WU Kexin, GE Zhihua. Study on the optimal temperature for flue gas waste heat recovery of the heat pump with new working fluid [J]. Integrated Intelligent Energy, 2023, 45(4): 19-25. |
[4] | JI Mingda, GOU Yujun, ZHONG Xiaohui. Performance simulation and analysis on photovoltaic and photothermal integration system in Baiyin area [J]. Integrated Intelligent Energy, 2023, 45(12): 43-52. |
[5] | GUO Guangzheng, GOU Yujun, ZHONG Xiaohui. Simulation study on the effect of flow channel's different cross-section on PV/T system performance [J]. Integrated Intelligent Energy, 2022, 44(4): 76-84. |
[6] | YU Li, XU Jingjing, MA Lanfang, WANG Youtian. Case study on the integrated energy service project with newly installed heat pumps [J]. Integrated Intelligent Energy, 2022, 44(1): 72-79. |
[7] | GUO Puwei, PENG Yue, DENG Jingmin, LI Bingfa, ZHOU Xing, HU Yun, GUO Haiqiang, WANG Jinxing. Feasibility study on the coupling application of flue gas waste heat recovery and energy storage technology [J]. Huadian Technology, 2021, 43(9): 62-68. |
[8] | LI Na, YI Zuyao, BAI Yinlei. Review and prospect of advanced heat supply and intelligent power generation technologies [J]. Huadian Technology, 2021, 43(3): 31-39. |
[9] | FANG Xu, PENG Xuefeng, ZHANG Kai, MA Jingbang, ZHAO Ruixiang, WANG Jinxing. Development of heating retrofit using waste heat from coal-fired CHP system cold end [J]. Huadian Technology, 2021, 43(3): 48-56. |
[10] | CHEN Erjian, JIA Teng, YAO Jian, DAI Yanjun. Progresses and applications of solar air conditioning and heat pump technologies [J]. Huadian Technology, 2021, 43(11): 40-48. |
[11] | MA Shuangchen,WU Kai,SUN Yao,LIU Chang,XING Haoru. Process schemes and fuzzy evaluation of moisture and waste heat recovery systems in coal-fired power plants #br# [J]. Huadian Technology, 2020, 42(3): 37-44. |
[12] |
ZHANG Junwei.
Cause analysis and solution for tube burst in highpressure superheater of NG-M701F-R heat recovery boiler |
[13] |
QUE Yanping,NING Yuqing.
Feasibility research of periodical exhaust steam recovery system in coalfiled units
[J]. Huadian Technology, 2019, 41(1): 62-63.
|
[14] |
YU Li1, 2.
Brief analysis on the development and design of building gas distributed energy supply system
[J]. Huadian Technology, 2018, 40(5): 73-74.
|
[15] |
WANG Guorong.
Chemical cleaning of heat recovery steam generator of 9F class gassteam combined cycle unit
[J]. Huadian Technology, 2018, 40(4): 30-33.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||