Huadian Technology ›› 2021, Vol. 43 ›› Issue (11): 40-48.doi: 10.3969/j.issn.1674-1951.2021.11.005
• Technologies for Large-scale Utilization • Previous Articles Next Articles
CHEN Erjian(), JIA Teng, YAO Jian, DAI Yanjun*(
)
Received:
2021-08-25
Revised:
2021-09-03
Published:
2021-11-25
Contact:
DAI Yanjun
E-mail:ejchen@sjtu.edu.cn;yjdai@sjtu.edu.cn
CLC Number:
CHEN Erjian, JIA Teng, YAO Jian, DAI Yanjun. Progresses and applications of solar air conditioning and heat pump technologies[J]. Huadian Technology, 2021, 43(11): 40-48.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.1674-1951.2021.11.005
Tab.1
Summary and comparison of progresses on solar heating and cooling technologies
太阳能供热制冷技术进展 | 适用场景 | 优点 | COPth | COPele |
---|---|---|---|---|
变效(1.N效)溴化锂吸收式制冷机组 | 商用 | 无极变效、单双效之间COP连续提升 | 0.69~1.10 | — |
单效风冷绝热吸收闪蒸制冷机组 | 家庭户用 | 体积小、风冷一体结构 | 0.64~0.76 | — |
采用除湿换热器的连续型除湿空调系统 | 商用 | 高效除湿,可实现热湿独立控制 | 0.34 | — |
热泵/太阳能驱动浓度差蓄冷/制冷循环 | 商用 | 可结合峰谷电价提高经济性 | — | — |
直膨式太阳能热泵 | 商用/家庭户用 | 高效稳定供热,受辐照强度影响较小 | — | 4.47 |
低温型直膨式太阳能热泵 | 商用/家庭户用 | 适应北方低温环境工况 | — | 2.51 |
直膨式太阳能辅助PVT热泵 | 商用/家庭户用 | 实现太阳能热电联产 | — | 8.00 |
太阳能辅助单级氨水平衡式再吸收热泵 | 商用 | 驱动温度低至85 ℃ | 1.55 | — |
基于GAX的两级平衡多重回热式再吸收热泵 | 商用 | 驱动温度低至73 ℃,低温适应性强 | 1.45 | — |
再吸收与蒸汽压缩耦合热泵 | 商用 | 稳定性好,低温适应性强 | — | 2.38 |
双热源驱动的GAX氨水吸收式热泵 | 商用 | 内部回热,热力性能好 | 1.80 | — |
[1] | 左春帅, 樊海鹰, 王恩宇. 太阳能跨季节储热供热系统性能研究[J]. 华电技术, 2020, 42(11):44-50. |
ZUO Chunshuai, FAN Haiying, WANG Enyu. Study on the performance of a solar seasonal heat-storage and heating system[J]. Huadian Technology, 2020, 42(11):44-50. | |
[2] | 王长君, 刘硕, 丁薛峰. 相变储能技术在清洁供暖中的应用研究[J]. 华电技术, 2020, 42(11):91-96. |
WANG Changjun, LIU Shuo, DING Xuefeng. The study on application of phase change energy storage technology in clean heating[J]. Huadian Technology, 2020, 42(11):91-96. | |
[3] | 赵斌, 卢大为, 刘维安, 等. 高寒高海拔地区太阳能集中供暖技术及其应用[J]. 华电技术, 2020, 42(11):51-55. |
ZHAO Bin, LU Dawei, LIU Weian, et al. Technology and aplication of solar central heating in extremely cold and high-altitude areas[J]. Huadian Technology, 2020, 42(11):51-55. | |
[4] |
ALAHMER A, AJIB S. Solar cooling technologies:State of art and perspectives[J]. Energy Conversion and Management, 2020, 214:112896.
doi: 10.1016/j.enconman.2020.112896 |
[5] |
SHE X, YIN Y, XU M, et al. A novel low-grade heat-driven absorption refrigeration system with LiCl-H2O and LiBr-H2O working pairs[J]. International Journal of Refrigeration, 2015, 58:219-234.
doi: 10.1016/j.ijrefrig.2015.06.016 |
[6] | 徐震原. 基于太阳能利用的溴化锂——水变效吸收式制冷的循环与系统研究[D]. 上海:上海交通大学, 2015. |
[7] | HEROLD K, RADERMACHER R, KLEIN S, Absorption chillers and heat pumps[M]. U.S: CRC Press, 1996. |
[8] | 代彦军, 王如竹. 太阳能制冷讲座(1):太阳能空调制冷技术[J]. 太阳能, 2010(5):46-52. |
[9] |
CHEN J, DAI Y, WANG H, et al. Experimental investigation on a novel air-cooled single effect LiBr-H2O absorption chiller with adiabatic flash evaporator and adiabatic absorber for residential application[J]. Solar Energy, 2018, 159:579-587.
doi: 10.1016/j.solener.2017.11.029 |
[10] |
ZHAO Y, GE T, DAI Y, et al. Experimental investigation on a desiccant dehumidification unit using fintube heat exchanger with silica gel coating[J]. Applied Thermal Engineering, 2014, 63(1):52-58.
doi: 10.1016/j.applthermaleng.2013.10.018 |
[11] |
CHU P, WANG H, CHEN J, et al. Experiment investigation on a LiBr-H2O concentration difference cold storage system driven by vapor compression heat pump[J]. Solar Energy, 2021, 214:294-309.
doi: 10.1016/j.solener.2020.12.015 |
[12] | 陈道川. 低温型直膨式太阳能热泵实验与性能优化[D]. 上海:上海交通大学, 2020. |
[13] |
YAO J, LIU W, ZHAO Y, et al. Two-phase flow investigation in channel design of the roll-bond cooling component for solar assisted PVT heat pump application[J]. Energy Conversion and Management, 2021, 235:113988.
doi: 10.1016/j.enconman.2021.113988 |
[14] |
JIA T, DAI E, DAI Y. Thermodynamic analysis and optimization of a balanced-type single-stage NH3-H2O absorption-resorption heat pump cycle for residential heating application[J]. Energy, 2019, 171:120-134.
doi: 10.1016/j.energy.2019.01.002 |
[15] |
JIA T, CHU P, DOU P, et al. Working domains of a novel solar-assisted GAX based two-stage absorption resorption heat pump with multiple internal heat recovery for space heating[J]. Energy Conversion and Management, 2020, 220:113060.
doi: 10.1016/j.enconman.2020.113060 |
[16] |
JIA T, DOU P, CHU P, et al. Proposal and performance analysis of a novel solar-assisted resorption subcooled compression hybrid heat pump system for space heating in cold climate condition[J]. Renewable Energy, 2020, 150:1136-1150.
doi: 10.1016/j.renene.2019.10.062 |
[17] | 贾腾. 太阳能氨水再吸收多重回热式热泵循环机理与实验研究[D]. 上海:上海交通大学, 2020. |
[18] |
DAI E, LIN M, XIA J, et al. Experimental investigation on a GAX based absorption heat pump driven by hybrid liquefied petroleum gas and solar energy[J]. Solar Energy, 2018, 169:167-178.
doi: 10.1016/j.solener.2018.04.038 |
[1] | LIN Lianjie, FAN Yi, LI Jing, ZHAO Xudong, LI Yunhai. Operation performance analysis on a novel solar heat recovery quasi two-stage compression heat pump system under typical weather conditions [J]. Integrated Intelligent Energy, 2023, 45(4): 74-80. |
[2] | JI Mingda, GOU Yujun, ZHONG Xiaohui. Performance simulation and analysis on photovoltaic and photothermal integration system in Baiyin area [J]. Integrated Intelligent Energy, 2023, 45(12): 43-52. |
[3] | GUO Guangzheng, GOU Yujun, ZHONG Xiaohui. Simulation study on the effect of flow channel's different cross-section on PV/T system performance [J]. Integrated Intelligent Energy, 2022, 44(4): 76-84. |
[4] | WANG Yizheng, HU Jiahua, TANG Qiwen, ZHAO Yiyan, SHEN Qi. Hydropower generation optimization and photovoltaic generation consumption in the spot market for electricity [J]. Integrated Intelligent Energy, 2022, 44(2): 73-79. |
[5] | HU Xiaolan, SONG Wei, PENG Chuansheng, LI Bo, JIANG Lihong, XIAO Zhaohui, HONG Keyan. Control and utilization of coal mine gas to achieve carbon peaking and carbon neutrality [J]. Huadian Technology, 2021, 43(12): 52-59. |
[6] | ZHANG Jinping, ZHOU Qiang, WANG Dingmei, LI Jin, LIU Lijuan, ZHANG Yanqi, WANG Sheng. Research on the development path of new power system to achieve carbon peaking and carbon neutrality [J]. Huadian Technology, 2021, 43(12): 46-51. |
[7] | AN Qingsong, YAN Ruoxue, SUN Boyang, MA Yitai. Natural working fluids transformation and carbon emission reduction potential on the path to carbon peaking and carbon neutrality [J]. Huadian Technology, 2021, 43(11): 85-90. |
[8] | DAI Baomin, LIU Shengchun, CAO Yu, YANG Haining, FENG Yining, XIAO Peng. Efficiency enhancement technology and carbon emission prediction of refrigeration system taking CO2 natural refrigerant in supermarkets [J]. Huadian Technology, 2021, 43(11): 74-84. |
[9] | LI Yang, WANG Heyang, WANG Yongzhen, ZHAO Jun. Background and routs of carbon neutrality and its nature-derived thermal solutions [J]. Huadian Technology, 2021, 43(11): 5-14. |
[10] | CHEN Jianyong, LI Hao, CHEN Ying, ZHAO Jun. Application status and perspectives of air-source heat pump air conditioning technology [J]. Huadian Technology, 2021, 43(11): 25-39. |
[11] | WANG Guiling, YANG Xuan, MA Ling, ZHOU Jiaqi, SHEN Guohua, WANG Wanli. Status quo and prospects of geothermal energy in heat supply [J]. Huadian Technology, 2021, 43(11): 15-24. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||