Huadian Technology ›› 2021, Vol. 43 ›› Issue (11): 5-14.doi: 10.3969/j.issn.1674-1951.2021.11.002
• Survey on Special Topics • Previous Articles Next Articles
LI Yang1(), WANG Heyang1(
), WANG Yongzhen2(
), ZHAO Jun1,*(
)
Received:
2021-09-08
Revised:
2021-10-12
Published:
2021-11-25
Contact:
ZHAO Jun
E-mail:liyangtju@tju.edu.cn;wang@tju.edu.cn;wyz80hou@bit.edu.cn;zhaojun@tju.edu.cn
CLC Number:
LI Yang, WANG Heyang, WANG Yongzhen, ZHAO Jun. Background and routs of carbon neutrality and its nature-derived thermal solutions[J]. Huadian Technology, 2021, 43(11): 5-14.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.1674-1951.2021.11.002
Tab.1
Definitive conclusions on the impact of human activities on global warming in IPCC reports
报告 | 年份 | 人类活动对全球变暖影响的结论 |
---|---|---|
第1次(FAR) | 1990 | 人类活动产生的各种排放……将使温室效应增强,平均来说就是使地表更加变暖 |
第2次(SAR) | 1995 | 自19世纪末以来,全球平均地面温度上升了0.3∼0.6 ℃,这一变化不可能完全是自然产生的 |
第3次(TAR) | 2001 | 新的、更强的证据表明,过去50年观察到的大部分增暖可以归咎于人类活动 |
第4次(AR4) | 2007 | 自20世纪中叶以来,大部分已观测到的全球平均温度升高很可能是观测到的人为温室气体体积分数增加导致的 |
第5次(AR5) | 2014 | 有95%的把握确认人类是当前全球变暖的主要原因 |
第6次(AR6 WGI) | 2021 | 人类活动使大气、海洋及陆地变暖,这是毫无疑问的 |
Tab.3
76 carbon neutrality technologies and their annual average CO2 reduction potential from 2020 to 2050[14]
序号 | 名称 | 4种分类① | 年均减碳潜力/(Mt CO2e) | 序号 | 名称 | 4种分类① | 年均减碳潜力/(Mt CO2e) |
---|---|---|---|---|---|---|---|
1 | 减少食物浪费 | 减-行-×-× | 2 915.00 | 39 | 高效航空 | 减-技-×-热 | 209.00 |
2 | 健康与教育 | 减-行-×-× | 2 847.33 | 40 | 地热能利用 | 替-技-自-热 | 206.33 |
3 | 富含植物饮食 | 减-行-×-× | 2 167.00 | 41 | 森林保护 | 循-行-自-× | 184.00 |
4 | 制冷剂管理 | 循-技-×-热 | 1 925.00 | 42 | 回收再利用 | 减-行-×-× | 183.33 |
5 | 热带森林恢复 | 循-行-自-× | 1 815.00 | 43 | 沼气炊事 | 循-技-×-热 | 155.00 |
6 | 陆上风电 | 替-技-自-× | 1 573.67 | 44 | 高效卡车 | 减-技-×-热 | 153.67 |
7 | 制冷剂替代 | 替-技-×-热 | 1 451.00 | 45 | 高效海运 | 减-技-×-× | 146.67 |
8 | 大规模光伏 | 替-技-自-热 | 1 410.67 | 46 | 高效热泵 | 减-技-×-热 | 138.67 |
9 | 清洁炊具 | 减-行-×-热 | 1 044.67 | 47 | 多年生能源作物 | 循-行-自-× | 133.33 |
10 | 分布式光伏 | 替-技-自-热 | 932.67 | 48 | 太阳能热水 | 替-技-自-热 | 119.67 |
11 | 林牧一体 | 循-行-自-× | 886.00 | 49 | 草原保护 | 循-行-自-× | 111.67 |
12 | 泥炭地保护与恢复 | 循-行-自-× | 867.67 | 50 | 稻米集约化 | 循-技-自-× | 92.67 |
13 | 退化土地人工林 | 循-行-自-× | 741.33 | 51 | 核电 | 替-技-×-热 | 88.33 |
14 | 温带森林恢复 | 循-行-自-× | 647.33 | 52 | 自行车设施 | 减-行-×-× | 85.33 |
15 | 集中式太阳能 | 替-技-自-热 | 620.00 | 53 | 生物质能 | 循-技-自-热 | 84.00 |
16 | 隔热措施 | 减-技-×-热 | 565.67 | 54 | 肥料管理 | 减-技-×-× | 78.00 |
17 | 放牧管理技术 | 循-技-自-× | 547.33 | 55 | 生物炭生产 | 循-技-自-× | 74.00 |
18 | LED照明 | 减-技-×-热 | 535.67 | 56 | 垃圾填埋甲烷捕集 | 减-技-×-热 | 72.67 |
19 | 多年生主食作物 | 循-行-自-× | 515.00 | 57 | 堆肥 | 循-技-自-× | 71.33 |
20 | 树木间作 | 循-行-自-× | 501.00 | 58 | 废物转发电 | 循-技-×-热 | 68.00 |
21 | 再生农业 | 循-技-自-× | 484.00 | 59 | 小型水电 | 替-技-×-× | 56.33 |
22 | 保护性农业 | 循-行-自-× | 446.67 | 60 | 便利步行措施 | 减-技-×-× | 48.00 |
23 | 废弃农田恢复 | 循-行-自-× | 416.00 | 61 | 海洋能利用 | 替-技-自-热 | 46.00 |
24 | 电动车 | 替-技-×-热 | 395.67 | 62 | 小农可持续集约化 | 减-行-×-× | 45.33 |
25 | 多层农林业 | 循-技-自-× | 376.67 | 63 | 电动自行车 | 替-技-×-× | 43.67 |
26 | 海上风电 | 替-技-自-× | 348.00 | 64 | 高速火车 | 减-技-×-× | 43.33 |
27 | 高性能玻璃 | 减-技-×-热 | 334.67 | 65 | 高效农场灌溉 | 减-技-自-× | 37.67 |
28 | 沼气池 | 循-技-×-热 | 327.67 | 66 | 再生纸 | 减-技-×-× | 36.67 |
29 | 提高水稻产量 | 减-技-自-× | 314.67 | 67 | 网真 | 减-行-×-× | 35.00 |
30 | 土著森林使用权 | 循-行-自-× | 289.67 | 68 | 沿海湿地保护 | 循-行-自-× | 33.00 |
31 | 竹生产 | 循-技-自-× | 275.67 | 69 | 生物塑料 | 循-技-×-× | 32.00 |
32 | 替代水泥 | 减-技-×-× | 266.00 | 70 | 低流量水具 | 减-行-×-× | 30.33 |
33 | 混合动力汽车 | 减-技-×-热 | 263.00 | 71 | 沿海湿地恢复 | 循-技-自-× | 25.67 |
34 | 共享出行 | 减-行-×-× | 256.67 | 72 | 配水效率 | 减-技-×-× | 22.00 |
35 | 公共交通 | 减-行-×-× | 250.33 | 73 | 屋顶绿化 | 减-技-自-× | 20.00 |
36 | 智能恒温器 | 减-技-×-热 | 233.00 | 74 | 可调光玻璃 | 减-技-×-× | 9.67 |
37 | 楼宇自动化 | 减-技-×-热 | 215.67 | 75 | 电气化铁路 | 减-技-×-× | 3.33 |
38 | 区域供热 | 减-技-×-热 | 209.33 | 76 | 微型风电 | 替-技-自-× | 3.00 |
Tab.4
Recent safety accidents of power systems with high-proportion renewable energy in the world
时间 | 地区 | 事故描述 |
---|---|---|
2015-07 | 中国新疆 | 哈密山北地区风电系统发生次/超同步振荡100余次,频率覆盖10~90 Hz,严重时导致3台660 MW直流配套火电机组相继跳闸 |
2019-08 | 英国伦敦 | 当地输电线路遭遇雷击,风电场因抗扰能力不足而脱网,故障冲击超出系统调节能力,导致频率持续跌落,引发大规模停电事故。事故时风电出力占比30% |
2020-08 | 美国加州 | 持续高温使电负荷激增,夜间无光伏且风电出力显著下降,导致40 万用户停电1 h,尖峰电价达1 美元/(kW·h) |
2021-02 | 美国德州 | 极端寒潮使电负荷激增,天然气发电机组故障且风电最低出力不足预期的10%,电力供应充裕度不足,导致超300 万人断电,尖峰电价达9 美元/(kW·h) |
2021-02 | 南澳大利亚 | 当地遭遇极端高温天气,由于气象预报低估了气温实际值,导致实际负荷过高,备用电严重不足,造成大规模停电。事故时风电出力占比30% |
Tab.5
Underground heat-storage reservoirs in Denmark
项目 | Ottrupgård | Sunstore 2 | Sunstore 3 | Sunstore 4 | Vojens | Gram | Toftlund |
---|---|---|---|---|---|---|---|
类型 | 示范项目 | 示范项目 | 示范项目 | 示范项目 | 商业项目 | 商业项目 | 商业项目 |
建成年份 | 1993—1995 | 2003 | 2013 | 2011—2012 | 2014—2015 | 2014—2015 | 2016—2017 |
温度范围/℃ | 35∼60 | 35∼90 | 10∼89 | 17∼88 | 40∼90 | 20∼90 | 20∼90 |
储放热功率/kW | 390 | 6 510 | 26 100 | 10 500 | 38 500 | 30 000 | 22 000 |
储热量/(MW·h) | 43.5 | 638.0 | 5 400.0 | 6 000.0 | 12 180.0 | 12 125.0 | 6 885.0 |
总初投资/万美元 | 27 | 79 | 269 | 315 | 591 | 509 | 485 |
单位初投资/[美元·(kW·h)-1] | 6.23 | 1.24 | 0.50 | 0.52 | 0.48 | 0.42 | 0.70 |
[1] | State of the global climate 2020[R]. Geneva:World Meteorological Organization, 2021. |
[2] | KEELING C D, PIPER S C, BACASTOW R B, et al. Exchanges of atmospheric CO2 and 13CO2 with the terrestrial biosphere and oceans from 1978 to 2000. I:Global aspects [R]. San Diego: Institution of Oceanography, 2001. |
[3] |
JOUZEL J, MASSON-DELMOTTE V, CATTANI O, et al. Orbital and millennial antarctic climate variability over the past 800 000 years[J]. Science, 2007, 317(5839):793-796.
doi: 10.1126/science.1141038 |
[4] |
LÜTHI D, LE FLOCH M, BEREITER B, et al. High-resolution carbon dioxide concentration record 650 000—800 000 years before present[J]. Nature, 2008, 453:379-382.
doi: 10.1038/nature06949 |
[5] |
ROGELJ J, ELZEN MDEN, HÖHNE N, et al. Paris agreement climate proposals need a boost to keep warming well below 2 ℃[J]. Nature, 2016, 534:631-639.
doi: 10.1038/nature18307 |
[6] |
RAFTERY A E, ZIMMER A, FRIERSON D M W, et al. Less than 2 ℃ warming by 2100 unlikely[J]. Nature Climate Change, 2017, 7:637-641.
doi: 10.1038/nclimate3352 |
[7] | Emissions gap report 2020 [R]. Nairobi: UNEP, 2020. |
[8] | RITCHIE H, ROSER M. CO2 and greenhouse gas emissions[DB/OL]. (2021-05-10)[2021-08-10]. https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions. |
[9] | Which countries have a net zero carbon goal [EB/OL]. (2019-06-14)[2021-08-10]. https://www.climatechangenews.com/2019/06/14/countries-net-zero-climate-goal. |
[10] | Global warming of 1.5 ℃: Glossary [R]. IPCC. |
[11] | 解振华:中国碳达峰是二氧化碳达峰,碳中和包括全部温室气体[EB/OL].(2021-07-26)[2021-08-10]. https://www.thepaper.cn/newsDetail_forward_13746034. |
[12] | Climate watch: Historical GHG emissions [DB/OL]. (2021-05-10)[2021-08-10]. https://www.climatewatchdata.org/ghg-emissions. |
[13] | 国家统计局. 中国统计年鉴2020 [M]. 北京: 中国统计出版社, 2020. |
[14] | Project drawdown: Table of solutions [DB/OL]. (2021-05-10)[2021-08-10]. https://www.drawdown.org/solutions. |
[15] | 张胜杰, 齐琛冏, 张金梦. 节能提效应是“碳中和”首要举措[N]. 中国能源报, 2020-12-21(26). |
[16] | 李元丽. 减碳第一优选是节能提效[EB/OL].(2021-05-25)[2021-08-10]. http://www.rmzxb.com.cn/c/2021-05-25/2863841.shtml. |
[17] | 史琳, 安青松. 基加利修正案生效后替代制冷剂的选择与对策思考[J]. 制冷与空调, 2019, 19(9):50-58. |
SHI Lin, AN Qingsong. Low GWP refrigerants options and countermeasures discussion after the entry into force of Kigali Amendment[J]. Refrigeration and Air-conditioning, 2019, 19(9):50-58. | |
[18] | 袁伟. 我国新能源形势及“十四五”发展的几个关键问题[R]. 北京: 国网能源研究院有限公司, 2021. |
[19] |
CRIPPA M, SOLAZZO E, GUIZZARDI D, et al. Food systems are responsible for a third of global anthropogenic GHG emissions[J]. Nature Food, 2021, 2:198-209.
doi: 10.1038/s43016-021-00225-9 |
[20] |
POORE J, NEMECEK T. Reducing food's environmental impacts through producers and consumers[J]. Science, 2018, 360(6392):987-992.
doi: 10.1126/science.aaq0216 |
[21] | MCCARTHY N. Oil firms spend millions on climate lobbying [EB/OL].(2019-03-26)[2021-08-10]. https://www.statista.com/chart/17467/annual-expenditure-on-climate-lobbying-by-oil-and-gas-companies/. |
[22] | LEISEROWITZ A, MAIBACH E, ROSER-RENOUF C, et al. Trump voters & global warming [R]. New Haven: Yale Program on Climate Change Communication, 2016. |
[23] | Nature-based solutions: About defining nature-based solutions [EB/OL].(2021-01-11)[2021-08-10]. https://www.iucn.org/theme/nature-based-solutions/about. |
[24] | 大自然保护协会. 基于自然的解决方案:研究与实践[M]. 北京: 中国环境出版集团, 2021. |
[25] | Carbon cycling and biosequestration: Report from the March 2008 workshop[R]. Washington DC: U.S. Department of Energy, Office of Science, 2008. |
[26] | NASA's Goddard Space Flight Center. A year in the life of earth's CO2 [EB/OL].(2014-11-17)[2021-08-10]. https://svs.gsfc.nasa.gov/11719. |
[27] | 赵军, 李扬, 李浩, 等. 中低温能源在中国 [J/OL]. 太阳能学报, 2020,网络首发[2021-08-10]. https://kns.cnki.net/kcms/detail/11.2082.TK.20201113.1409.002.htm. |
ZHAO Jun, LI Yang, LI Hao, et al. Mid-/low-temperature energy in China [J/OL]. Acta Energiae Solaris Sinica, 2020,Available Online[2021-08-10]. https://kns.cnki.net/kcms/detail/11.2082.TK.20201113.1409.002.html. | |
[28] | 中国可再生能源发展报告2019 [R]. 北京: 水电水利规划设计总院, 2020. |
[29] | 地热能开发利用“十三五”规划[R]. 北京: 国家发展和改革委员会, 国家能源局, 国土资源部, 2017. |
[30] | 蔺文静. 浅部地质环境热调蓄能力及其可利用性研究[D]. 北京: 中国地质科学院, 2012. |
[31] | 潘进军, 江滢, 郭鹏, 等. 中国太阳能资源和环境气象因子影响分析[J]. 科技导报, 2014, 32(20):15-21. |
PAN Jinjun, JIANG Ying, GUO Peng, et al. Analysis of China's solar energy resources and environmental meteorological factors[J]. Science & Technology Review, 2014, 32(20):15-21. | |
[32] | Renewables 2011—2021 global status report [R]. Paris: REN21 Secretariat. |
[33] | 施伟勇, 王传崑, 沈家法. 中国的海洋能资源及其开发前景展望[J]. 太阳能学报, 2011, 32(6):913-923. |
SHI Weiyong, WANG Chuankun, SHEN Jiafa. Utilization and prospect of ocean energy resource in China[J]. Acta Energiae Solaris Sinica, 2011, 32(6):913-923. | |
[34] | 郭剑波. 双碳目标下电力系统发展及挑战[R]. 北京: 中国电力科学研究院, 2021. |
[35] | 喻小宝, 郑丹丹, 杨康, 等. “双碳”目标下能源电力行业的机遇与挑战[J]. 华电技术, 2021, 43(6):21-32. |
YU Xiaobao, ZHENG Dandan, YANG Kang, et al. Opportunities and challenges faced by energy and power industry with the goal of carbon neutrality and carbon peak[J]. Huadian Technology, 2021, 43(6):21-32. | |
[36] | 王永真, 张靖, 潘崇超, 等. 综合智慧能源多维绩效评价指标研究综述[J]. 全球能源互联网, 2021, 4(3):207-225. |
[37] | 童家麟, 洪庆, 吕洪坤, 等. 电源侧储能技术发展现状及应用前景综述[J]. 华电技术, 2021, 43(7):17-23. |
TONG Jialin, HONG Qing, LYU Hongkun, et al. Development status and application prospect of power side energy storage technology[J]. Huadian Technology, 2021, 43(7):17-23. | |
[38] | 李廷贤. 高密度储热及能质调控的原理与方法探索[R]. 上海: 上海交通大学, 2021. |
[39] | BOLLINGER B R. Malta Pumped Heat Electricity Storage (PHES) for coal exit and energy transition from fossil to renewable energies[R]. Cambridge:Malta Incorporated, 2020. |
[40] |
ZIEGLER M S, MUELLER J M, PEREIRA G D, et al. Storage requirements and costs of shaping renewable energy toward grid decarbonization[J]. Joule, 2019, 3(9):2134-2153.
doi: 10.1016/j.joule.2019.06.012 |
[41] | Technology data for energy storage[R]. Copenhagen: Danish Energy Agency, 2019. |
[1] | CHEN Yong, XIAO Leiming, WANG Jingnan, WU Jian. Capacity planning method with high reliability for integrated energy systems with low-carbon emissions based on scenario expansion [J]. Integrated Intelligent Energy, 2024, 46(4): 24-33. |
[2] | JIANG Ting, ZHAO Yajiao. Carbon emission reduction analysis for gas-based distributed integrated energy systems [J]. Integrated Intelligent Energy, 2022, 44(9): 27-32. |
[3] | Yating GUO, Tianyin DENG, Yanying LIU, Guangli HE. Research on the performance of membranes and anode materials in alkaline water electrolysis [J]. Integrated Intelligent Energy, 2022, 44(5): 64-68. |
[4] | WANG Yizheng, HU Jiahua, TANG Qiwen, ZHAO Yiyan, SHEN Qi. Hydropower generation optimization and photovoltaic generation consumption in the spot market for electricity [J]. Integrated Intelligent Energy, 2022, 44(2): 73-79. |
[5] | ZHAO Yongliang, LIU Ming, WANG Chaoyang, SUN Ruiqiang, CHONG Daotong, YAN Junjie. Thermo-economic analysis on the pumped thermal energy storage system based on the solid packed beds [J]. Huadian Technology, 2021, 43(7): 1-8. |
[6] | HU Xiaolan, SONG Wei, PENG Chuansheng, LI Bo, JIANG Lihong, XIAO Zhaohui, HONG Keyan. Control and utilization of coal mine gas to achieve carbon peaking and carbon neutrality [J]. Huadian Technology, 2021, 43(12): 52-59. |
[7] | ZHANG Jinping, ZHOU Qiang, WANG Dingmei, LI Jin, LIU Lijuan, ZHANG Yanqi, WANG Sheng. Research on the development path of new power system to achieve carbon peaking and carbon neutrality [J]. Huadian Technology, 2021, 43(12): 46-51. |
[8] | AN Qingsong, YAN Ruoxue, SUN Boyang, MA Yitai. Natural working fluids transformation and carbon emission reduction potential on the path to carbon peaking and carbon neutrality [J]. Huadian Technology, 2021, 43(11): 85-90. |
[9] | DAI Baomin, LIU Shengchun, CAO Yu, YANG Haining, FENG Yining, XIAO Peng. Efficiency enhancement technology and carbon emission prediction of refrigeration system taking CO2 natural refrigerant in supermarkets [J]. Huadian Technology, 2021, 43(11): 74-84. |
[10] | CHEN Erjian, JIA Teng, YAO Jian, DAI Yanjun. Progresses and applications of solar air conditioning and heat pump technologies [J]. Huadian Technology, 2021, 43(11): 40-48. |
[11] | CHEN Jianyong, LI Hao, CHEN Ying, ZHAO Jun. Application status and perspectives of air-source heat pump air conditioning technology [J]. Huadian Technology, 2021, 43(11): 25-39. |
[12] | WANG Guiling, YANG Xuan, MA Ling, ZHOU Jiaqi, SHEN Guohua, WANG Wanli. Status quo and prospects of geothermal energy in heat supply [J]. Huadian Technology, 2021, 43(11): 15-24. |
[13] | ZHAO Guotao, QIAN Guoming, WANG Sheng, DING Quan, ZHU Haidong. Analysis on solution for green and low-carbon transformation of thermal power enterprises to achieve carbon peak and carbon neutrality [J]. Huadian Technology, 2021, 43(10): 11-21. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||