Huadian Technology ›› 2021, Vol. 43 ›› Issue (7): 1-8.doi: 10.3969/j.issn.1674-1951.2021.07.001
• Energy Storage System • Next Articles
ZHAO Yongliang(), LIU Ming, WANG Chaoyang, SUN Ruiqiang, CHONG Daotong, YAN Junjie*(
)
Received:
2021-05-01
Revised:
2021-06-30
Published:
2021-07-25
Contact:
YAN Junjie
E-mail:yl.zhao@stu.xjtu.edu.cn;yanjj@mail.xjtu.edu.cn
CLC Number:
ZHAO Yongliang, LIU Ming, WANG Chaoyang, SUN Ruiqiang, CHONG Daotong, YAN Junjie. Thermo-economic analysis on the pumped thermal energy storage system based on the solid packed beds[J]. Huadian Technology, 2021, 43(7): 1-8.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.1674-1951.2021.07.001
[1] |
ZHOU S, WANG Y, ZHOU Y Y, et al. Roles of wind and solar energy in China's power sector:Implications of intermittency constraints[J]. Applied Energy, 2018, 213:22-30.
doi: 10.1016/j.apenergy.2018.01.025 |
[2] |
CRUZ M R M, FITIWI D Z, SANTOS S F, et al. A comprehensive survey of flexibility options for supporting the low-carbon energy future[J]. Renewable and Sustainable Energy Reviews, 2018, 97:338-353.
doi: 10.1016/j.rser.2018.08.028 |
[3] | 魏海姣, 鹿院卫, 张灿灿, 等. 燃煤机组灵活性调节技术研究现状及展望[J]. 华电技术, 2020, 42(4):63-69. |
WEI Haijiao, LU Yuanwei, ZHANG Cancan, et al. Status and prospect of flexibility regulation technology for coal-fired power plants[J]. Huadian Technology, 2020, 42(4):63-69. | |
[4] | 王金星, 张少强, 张瀚文, 等. 燃煤电厂调峰调频储能技术的研究进展[J]. 华电技术, 2020, 42(4):64-71. |
WANG Jinxing, ZHANG Shaoqiang, ZHANG Hanwen, et al. Progress on the peak load regulation,frequency regulation and energy storage technologies for coal-fired power plants[J]. Huadian Technology, 2020, 42(4):64-71. | |
[5] | 王兴兴, 孙建桥, 陈明. 储能火电联合调频系统设计与研究[J]. 华电技术, 2020, 42(4):78-82. |
WANG Xingxing, SUN Jianqiao, CHEN Ming. Design and research on energy storage and thermal power combined frequency modulation systems[J]. Huadian Technology, 2020, 42(4):78-82. | |
[6] | RAHMAN M M, ONI A O, GEMECHU E, et al. Assessment of energy storage technologies:A review[J]. Energy Conversion and Management, 2020, 223.DOI: 10.1016/j.enconman.2020.113295. |
[7] |
ANEKE M, WANG M H. Energy storage technologies and real life applications—A state of the art review[J]. Applied Energy, 2016, 179:350-377.
doi: 10.1016/j.apenergy.2016.06.097 |
[8] |
STEINMANN W D. Thermo-mechanical concepts for bulk energy storage[J]. Renewable and Sustainable Energy Reviews, 2017, 75:205-219.
doi: 10.1016/j.rser.2016.10.065 |
[9] | OLYMPIOS A V, MCTIGUE J D, FARRES-ANTUNEZ P, et al. Progress and prospects of thermo-mechanical energy storage—A critical review[J]. Progress in Energy, 2020, 3.DOI: 10.1088/2516-1083/abdbba. |
[10] | 韩伟, 崔凯平, 赵晓辉, 等. 光热电站储热系统设计及储罐预热方案研究[J]. 华电技术, 2020, 42(4):42-46. |
HAN Wei, CUI Kaiping, ZHAO Xiaohui, et al. Design for CSP plants' energy storage system and research on preheating strategy with tanks[J]. Huadian Technology, 2020, 42(4):42-46. | |
[11] | 左春帅, 樊海鹰, 王恩宇. 太阳能跨季节储热供热系统性能研究[J]. 华电技术, 2020, 42(11):50-56. |
ZUO Chunshuai, FAN Haiying, WANG Enyu. Study on the performance of a solar seasonal heat-storage and heating system[J]. Huadian Technology, 2020, 42(11):50-56. | |
[12] |
BENATO A. Performance and cost evaluation of an innovative pumped thermal electricity storage power system[J]. Energy, 2017, 138:419-436.
doi: 10.1016/j.energy.2017.07.066 |
[13] |
BENATO A, STOPPATO A. Heat transfer fluid and material selection for an innovative pumped thermal electricity storage system[J]. Energy, 2018, 147:155-168.
doi: 10.1016/j.energy.2018.01.045 |
[14] |
GEORGIOU S, SHAH N, MARKIDES C N. A thermo-economic analysis and comparison of pumped-thermal and liquid-air electricity storage systems[J]. Applied Energy, 2018, 226:1119-1133.
doi: 10.1016/j.apenergy.2018.04.128 |
[15] |
WANG L, LIN X P, CHAI L, et al. Cyclic transient behavior of the Joule-Brayton based pumped heat electricity storage:Modeling and analysis[J]. Renewable and Sustainable Energy Reviews, 2019, 111:523-534.
doi: 10.1016/j.rser.2019.03.056 |
[16] |
WANG L, LIN X P, CHAI L, et al. Unbalanced mass flow rate of packed bed thermal energy storage and its influence on the Joule-Brayton based pumped thermal electricity storage[J]. Energy Conversion and Management, 2019, 185:593-602.
doi: 10.1016/j.enconman.2019.02.022 |
[17] | LAUGHLIN R B. Pumped thermal grid storage with heat exchange[J]. Journal of Renewable and Sustainable Energy, 2017, 9(4).DOI: 10.1063/1.4994054. |
[18] | SALOMONE-GONZáLEZ D, GONZáLEZ-AYALA J, MEDINA A, et al. Pumped heat energy storage with liquid media:Thermodynamic assessment by a Brayton-like model[J]. Energy Conversion and Management, 2020, 226.DOI: 10.1016/j.enconman.2020.113540. |
[19] | ZHAO Yongliang, LIU Ming, SONG Jian, et al. Advanced exergy analysis of a Joule-Brayton pumped thermal electricity storage system with liquid-phase storage[J]. Energy Conversion and Management, 2021, 231.DOI: 10.1016/j.enconman.2021.113867. |
[20] | DUMONT O, FRATE G F, PILLAI A, et al. Carnot battery technology:A state-of-the-art review[J]. Journal of Energy Storage, 2020, 32.DOI: 10.1016/j.est.2020.101756. |
[21] | FRATE G F, FERRARI L, DESIDERI U. Multi-criteria investigation of a pumped thermal electricity storage (PTES) system with thermal integration and sensible heat storage[J]. Energy Conversion and Management, 2020, 208.DOI: 10.1016/j.enconman.2020.112530. |
[22] | HU S Z, YANG Z, LI J, et al. Thermo-economic analysis of the pumped thermal energy storage with thermal integration in different application scenarios[J]. Energy Conversion and Management, 2021, 236.DOI: 10.1016/j.enconman.2021.114072. |
[23] |
SMALLBONE A, JÜLCH V, WARDLE R, et al. Levelised cost of storage for pumped heat energy storage in comparison with other energy storage technologies[J]. Energy Conversion and Management, 2017, 152:221-228.
doi: 10.1016/j.enconman.2017.09.047 |
[24] | TAFONE A, DING Y L, LI Y L, et al. Levelised Cost of Storage(LCOS) analysis of liquid air energy storage system integrated with Organic Rankine Cycle[J]. Energy, 2020, 198.DOI: 10.1016/j.energy.2020.117275. |
[25] | JULCH V. Comparison of electricity storage options using levelized cost of storage(LCOS) method[J]. Applied Energy, 2016, 183:1594-1606. |
[26] | MOSTAFA M H, ABDEL ALEEM S H E, ALI S G, et al. Techno-economic assessment of energy storage systems using annualized life cycle cost of storage(LCCOS) and levelized cost of energy(LCOE) metrics[J]. Journal of Energy Storage, 2020, 29.DOI: 10.1016/j.est.2020.101345. |
[27] |
CHEN L X, HU P, ZHAO P P, et al. Thermodynamic analysis of a high temperature pumped thermal electricity storage(HT-PTES) integrated with a parallel Organic Rankine Cycle(ORC)[J]. Energy Conversion and Management, 2018, 177:150-160.
doi: 10.1016/j.enconman.2018.09.049 |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
[3] | XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development [J]. Integrated Intelligent Energy, 2023, 45(9): 48-58. |
[4] | LIU Tianyang, GAO Yajing, XIE Dian, ZHAO Liang. Analysis on the construction path of functional zero-carbon parks [J]. Integrated Intelligent Energy, 2023, 45(8): 44-52. |
[5] | TENG Jialun, LI Hongzhong. Analysis on development and key technologies of integrated intelligent energy in the context of carbon neutrality [J]. Integrated Intelligent Energy, 2023, 45(8): 53-63. |
[6] | HU Kaiyong, LIU Feng, WU Xiujie, HU Yunqing, ZHENG Yi, TIAN Shen. Carbon-economy analysis on energy supply methods for rural buildings based on Trnsys energy consumption prediction [J]. Integrated Intelligent Energy, 2023, 45(8): 64-71. |
[7] | WANG Yongzhen, HAN Yibo, HAN Kai, HAN Juntao, SONG Kuo, ZHANG Lanlan. Researches on data center integrated energy systems based on knowledge graph [J]. Integrated Intelligent Energy, 2023, 45(7): 1-10. |
[8] | LI Yizhe, WANG Dan, JIA Hongjie, ZHOU Tianshuo, CAO Yitao, ZHANG Shuai, LIU Jiawei. Diverse modeling methods for energy hubs in integrated energy systems and their typical applications [J]. Integrated Intelligent Energy, 2023, 45(7): 22-29. |
[9] | LIU Jian, LIU Yuxin, ZHUANG Hanyu. Key technologies and construction practices of virtual power plants [J]. Integrated Intelligent Energy, 2023, 45(6): 59-65. |
[10] | ZHAO Guotao, QIAN Guoming, SUN Yanbing, DING Quan, ZHU Haidong. Application of carbon-escape accounting system in integrated energy systems' low-carbon evaluation [J]. Integrated Intelligent Energy, 2023, 45(6): 73-80. |
[11] | LIU Ziqi, SU Tingting, HE Jiayang, WANG Yu. Research on the optimal allocation of energy storage in distribution network based on multi-objective particle swarm optimization algorithm [J]. Integrated Intelligent Energy, 2023, 45(6): 9-16. |
[12] | ZHOU Shuxin, FAN Huailin, HU Xun. Preparation of biomass-based carbon materials and its application as electrodes in supercapacitors [J]. Integrated Intelligent Energy, 2023, 45(5): 1-12. |
[13] | FAN Dekai, FU Jie, LIU Yang, ZHOU Chunbao, DAI Jianjun. Review on the preparation of high-value chemicals from cellulose pyrolysis [J]. Integrated Intelligent Energy, 2023, 45(5): 24-31. |
[14] | LI Minxia, HOU Beiran, WANG Pai, DONG Liwei, TIAN Hua. Application and development of CO2 transcritical cycle heat pumps [J]. Integrated Intelligent Energy, 2023, 45(4): 12-18. |
[15] | LI Qi, WANG Fangfang, YANG Pengwei, ZHAO Guangjin, LIU Xiaona, MA Shuangchen. Application status and development of energy storage technology in the context of flexibility transformation of thermal power plants [J]. Integrated Intelligent Energy, 2023, 45(3): 66-73. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||