Integrated Intelligent Energy ›› 2023, Vol. 45 ›› Issue (5): 24-31.doi: 10.3969/j.issn.2097-0706.2023.05.003
• Application of Biomass Materials • Previous Articles Next Articles
FAN Dekai(), FU Jie, LIU Yang, ZHOU Chunbao, DAI Jianjun*(
)
Received:
2023-01-03
Revised:
2023-04-01
Published:
2023-05-25
Supported by:
CLC Number:
FAN Dekai, FU Jie, LIU Yang, ZHOU Chunbao, DAI Jianjun. Review on the preparation of high-value chemicals from cellulose pyrolysis[J]. Integrated Intelligent Energy, 2023, 45(5): 24-31.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2023.05.003
Table 1
Dehydrated sugar produced from cellulose pyrolysis
催化剂 | 温度/℃ | w(LGO)/% | w(LG)/% | w(LAC)/% | 结论 | 文献 |
---|---|---|---|---|---|---|
H3PO4 | 350 | 22.30 | 0.06 | — | 热解产物中LGO/LG的比例由磷酸的浓度决定 | [ |
SO42-/TiO2-Fe3O4 | 300 | 15.43 | — | — | 固体酸催化剂代替传统液体酸 | [ |
[EMIM]CH3C6H4SO3 | 300 | 29.70 | — | — | [ | |
极性非质子溶剂(THF)、γ-戊内酯乙酸乙酯、丙酮和乙醇) | 210 | 51.00 | — | — | 6.9 MPa THF的低沸点(66 ℃) | [ |
Al2O3-TiO2 | 350 | 22.00 | — | 8.60 | 使LAC容易从生物油中分离 | [ |
Table 2
Aromatics productions from cellulose pyrolysis
催化剂 | 温度/℃ | 烃类产率 | 结论 | 文献 |
---|---|---|---|---|
5A,SAPO-34,HY,BETA和HZSM-5 | 500 | HZSM-5:21.1% | 沸石孔结构与酸位点之间作用对芳烃产率有影响 | [ |
1%Ni-0.5mol/LHF-Z5 | 500 | 31.3% | HF可以在保留酸位的同时产生中孔,使含氧物种进入裂解并形成芳烃 | [ |
NaOH,Na2CO3,TPAOH-ZSM-5 | — | Na2CO3-ZSM-5:38.2% | Na2CO3使高价值轻芳烃(如苯、甲苯和二甲苯)的选择性增加,大芳烃的选择性降低 | [ |
ZSM-5(2 μm,200 nm,50 nm) | 600 | ZSM-5-200 nm:38.4 % | 200 nm的ZSM-5上获得芳烃最大产率 | [ |
[1] | 张东旺, 范浩东, 赵冰, 等. 国内外生物质能源发电技术应用进展[J]. 华电技术, 2021, 43(3):70-75. |
ZHANG Dongwang, FAN Haodong, ZHAO Bing, et al. Development of biomass power generation technology at home and abroad[J]. Huadian Technology, 2021, 43(3):70-75. | |
[2] |
WANG Y, FAN M, ZHU L, et al. Enhancement of Bio-based para-xylene selectivity in catalytic fast pyrolysis of cellulose using a surface-modified Mg/P/HZSM-5 catalyst[J]. Chemical Research in Chinese Universities, 2019, 35(3):449-456.
doi: 10.1007/s40242-019-9024-6 |
[3] | 程毅, 屈一新, 庄抗, 等. 木质纤维生物质热解及中间产物缩合机理研究进展[J]. 现代化工, 2021, 41(2):28-32,37. |
CHENG Yi, QU Yixin, ZHUANG Kang, et al. Research progress on mechanism of lignocellulose pyrolysis and intermediates condensation[J]. Modern Chemical Industry, 2021, 41(2):28-32,37. | |
[4] | 苏琼, 肖波, 汪莹莹. 纤维素类生物质热解影响因素分析[J]. 能源研究与信息, 2007(1):11-15. |
SU Qiong, XIAO Bo, WANG Yingying. Study on the effects of operating conditions on cellulosic-biomass pyrolysis[J]. Energy Research and Information, 2007(1):11-15. | |
[5] |
姬文心, 曾鸣, 丛宏斌, 等. 生物质热解反应装置研究现状及展望[J]. 生物质化学工程, 2019, 53(3):46-58.
doi: 10.3969/j.issn.1673-5854.2019.03.007 |
JI Wenxin, ZENG Ming, CONG Hongbin, et al. Research status and prospect of biomass pyrolysis reactor[J]. Biomass Chemical Engineering, 2019, 53(3):46-58.
doi: 10.3969/j.issn.1673-5854.2019.03.007 |
|
[6] |
白斌, 周卫红, 丁毅飞, 等. 纤维素热解动力学分析方法研究[J]. 生物质化学工程, 2017, 51(4):8-16.
doi: 10.3969/j.issn.1673-5854.2017.04.002 |
BAI Bin, ZHOU Weihong, DING Yifei, et al. Analysis method of cellulose pyrolysis dynamics[J]. Biomass Chemical Engineering, 2017, 51(4):8-16.
doi: 10.3969/j.issn.1673-5854.2017.04.002 |
|
[7] |
高子翔, 张胜南, 易维明. 纤维素典型热解产物生成机理研究进展[J]. 生物质化学工程, 2019, 53(5):57-66.
doi: 10.3969/j.issn.1673-5854.2019.05.010 |
GAO Zixiang, ZHANG Shengnan, YI Weiming. Research progress in formation mechanism of typical pyrolysis products of cellulose[J]. Biomass Chemical Engineering, 2019, 53(5):57-66.
doi: 10.3969/j.issn.1673-5854.2019.05.010 |
|
[8] |
MOHAN D, CHARLES U, PITTMAN J. et al. Pyrolysis of Wood/Biomass for Bio-oil:A critical review[J]. Energy Fuels, 2006, 20(3):848-889.
doi: 10.1021/ef0502397 |
[9] |
ATALLA R, VANDERHART D. Native cellulose:A composite of two distinct crystalline forms[J]. Science, 1984, 223(4633):283-285.
doi: 10.1126/science.223.4633.283 |
[10] |
HABIBI Y, LUCIA L, ROJAS O. Cellulose nanocrystals: Chemistry,self-assembly,and applications[J]. Chemical Reviews, 2010, 110(6):3479-3500.
doi: 10.1021/cr900339w |
[11] |
LI H, WANG Q, ZHANG L, et al. Influence of the degrees of polymerization of cellulose on the water absorption performance of hydrogel and adsorption kinetics[J]. Polymer Degradation and Stability, 2019.DOI:10.1016/j.polymdegradstab.2019.108958.
doi: 10.1016/j.polymdegradstab.2019.108958 |
[12] | KILZER R, BROIDO A. Speculations on the nature of cellulose pyrolysis[J]. Pyrodynamics, 1965(2):152-157. |
[13] | BROIDO A. Kinetics of solid-phase cellulose pyrolysis[J]. Thermal Uses and Properties of Carbonhydrates and Lignin, 1976:19-36. |
[14] |
BRADBURY A, SAKA I, SHAFIZADEH F. A kinetic model for pyrolysis of cellulose[J]. Journal of Applied Polymer Science, 1979, 23(11):3271-3280.
doi: 10.1002/app.1979.070231112 |
[15] | 李承宇, 张军, 袁浩然, 等. 纤维素热解转化的研究进展[J]. 燃料化学学报, 2021, 49(12):1733-1751. |
LI Chengyu, ZHANG Jun, YUAN Haoran, et al. Advance on the pyrolytic transformation of cellulose[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12):1733-1751.
doi: 10.1016/S1872-5813(21)60134-2 |
|
[16] |
BOUTIN O, FERRER M, LEDE J. Radiant flash pyrolysis of cellulose-evidence for the formation of short life time intermediate liquid species[J]. Journal of Analytical and Applied Pyrolysis, 1998, 47(1):13-31.
doi: 10.1016/S0165-2370(98)00088-6 |
[17] |
JONAS K, MUFTI A, SURYO P. Multi-distribution activation energy model on slow pyrolysis of cellulose and lignin in TGA/DSC[J]. Heliyon, 2021.DOI:10.1016/j.heliyon.2021.e07669.
doi: 10.1016/j.heliyon.2021.e07669 |
[18] | JIANG L, LUO J, XU F, et al. High yield production of levoglucosan via catalytic pyrolysis of cellulose at low temperature[J]. Fuel, 2022,323. |
[19] | 李三平, 王述洋, 孙雪, 等. 国内外生物质热解动力学模型的研究现状[J]. 生物质化学工程, 2013, 47(4):29-36. |
LI Sanping, WANG Shuyang, SUN Xue, et al. The domestic and abroad research status of biomass pyrolysis kinetics model[J]. Biomass Chemical Engineering, 2013, 47(4): 29-36. | |
[20] |
ZONG P, JIANG Y, TIAN Y. Pyrolysis behavior and product distributions of biomass six group components: Starch,cellulose, hemicellulose,lignin,protein and oil[J]. Energy Conversion and Management, 2020.DOI:10.1016/j.enconman.2020.112777.
doi: 10.1016/j.enconman.2020.112777 |
[21] |
METTLER M, PAULSEN A, VLACHOS D, et al. The chain length effect in pyrolysis:Bridging the gap between glucose and cellulose[J]. Green Chemistry, 2012, 14(5):1284-1288.
doi: 10.1039/c2gc35184f |
[22] |
LU Q, YANG X, DONG C, et al. Influence of pyrolysis temperature and time on the cellulose fast pyrolysis products: Analytical Py-GC/MS study[J]. Journal of Analytical and Applied Pyrolysis, 2011, 92(2):430-438.
doi: 10.1016/j.jaap.2011.08.006 |
[23] |
METTLER M, PAULSEN A, VLACHOS D G, et al. The chain length effect in pyrolysis:Bridging the gap between glucose and cellulose[J]. Green Chemistry, 2012, 14(5):1284-1288.
doi: 10.1039/c2gc35184f |
[24] |
FOWLES M. Black carbon sequestration as an alternative to bioenergy[J]. Biomass and Bioenergy, 2007, 31(6):426-432.
doi: 10.1016/j.biombioe.2007.01.012 |
[25] |
ROOSTA M, GHAEDI M, DANESHFAR A, et al. Optimization of the ultrasonic assisted removal of methylene blue by gold nanoparticles loaded on activated carbon using experimental design methodology[J]. Ultrasonics Sonochemistry, 2014, 21(1):242-252.
doi: 10.1016/j.ultsonch.2013.05.014 pmid: 23856588 |
[26] | 周舒心, 范怀林, 胡勋. 生物质基碳材料制备及其在超级电容器电极材料中的应用[J/OL]. 综合智慧能源:1-12. [2023-02-27](2023-04-01). http://kns.cnki.net/kcms/detail/41.1461.TK.20230224.1133.004.html. |
ZHOU Shuxin, FAN Huailin, HU Xun. Preparation of biomass-based carbon materials and its application as electrodes in supercapacitors[J/OL]. Integrated Intelligent Energy:1-12. [2023-02-27](2023-04-01). http://kns.cnki.net/kcms/detail/41.1461.TK.20230224.1133.004.html. | |
[27] |
YUE L, XIA Q, WANG L, et al. CO2 adsorption at nitrogen-doped carbons prepared by K2CO3 activation of urea-modified coconut shell[J]. Journal of Colloid And Interface Science, 2018, 511:259-267.
doi: 10.1016/j.jcis.2017.09.040 |
[28] | 付洁. 生物质热解转化机理及生物炭吸附应用研究[D]. 北京: 北京化工大学, 2022. |
FU Jie. Mechanism of biomass pyrolysis and application of biochar adsorbent[D]. Beijing: Beijing University of Chemical Technology, 2022. | |
[29] | 朱克明, 王德超, 朱永峰, 等. 纤维素热解气催化提质制备呋喃类化合物研究[J]. 林产化学与工业, 2021, 41(1):85-92. |
ZHU Keming, WANG Dechao, ZHU Yongfeng, et al. Catalytic upgrading of cellulose pyrolysis vapor for furan compounds[J]. Chemistry and Industry of Forest Products, 2021, 41(1):85-92. | |
[30] | 项贤亮. 生物质低温定向热解制备酮类平台化合物的试验研究[D]. 镇江: 江苏大学, 2021. |
XIANG Xianliang. Experimental study on preparation of ketone platform compounds by low temperature directional pyrolysis of biomass[D]. Zhenjiang: Jiangsu University, 2021. | |
[31] | 李萧纹. 生物质热解气定向聚合制备多孔碳材料研究[D]. 南京: 东南大学, 2020. |
LI Xiaowen. Preparation of porous carbon materials by orientated polymerization of biomass pyrolysis gas[D]. Nanjing: Southeast University, 2020. | |
[32] | HUANG X, REN J, RAN J. et al. Recent advances in pyrolysis of cellulose to value-added chemicals[J]. Fuel Processing Technology, 2022:229-246. |
[33] |
DOBELE G, ROSSINSKAJA G, DIZHBITE T. et al. Application of catalysts for obtaining 1,6-anhydrosaccharides from cellulose and wood by fast pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2004, 74(1):401-405.
doi: 10.1016/j.jaap.2004.11.031 |
[34] |
LU Q, YE X, ZHANG Z, et al. Catalytic fast pyrolysis of cellulose and biomass to produce levoglucosenone using magnetic SO42-/TiO2-Fe3O4[J]. Bioresour Technol, 2014, 171:10-15.
doi: 10.1016/j.biortech.2014.08.075 |
[35] |
KUDO S, ZHOU Z, YAMASAKI K, et al. Sulfonate ionic liquid as a stable and active catalyst for levoglucosenone production from saccharides via catalytic pyrolysis[J]. Catalysts, 2013, 3(4)757-773.
doi: 10.3390/catal3040757 |
[36] | CAO F, SCHWARTZ T, MCCLELLANG D, et al. Dehydration of cellulose to levoglucosenone using polar aprotic solvents[J]. Energy & Environmental Science, 2015, 8(6):1808-1815. |
[37] |
FABBRI D, TORRI C, MANCINI I. Pyrolysis of cellulose catalysed by nanopowder metal oxides:Production and characterisation of a chiral hydroxylactone and its role as building block[J]. Green Chemistry, 2007, 9(12):1374-1379.
doi: 10.1039/b707943e |
[38] |
SUI X, WANG Z, LIAO B, et al. Preparation of levoglucosenone through sulfuric acid promoted pyrolysis of bagasse at low temperature[J]. Bioresource Technology, 2012, 103(1):466-469.
doi: 10.1016/j.biortech.2011.10.010 |
[39] | FURNEAUX R, MASON J, MILLER I. A novel hydroxylactone from the Lewis acid catalysed pyrolysis of cellulose[J]. Journal of the Chemical Society Perkin Transactions, 1988(1):49-51. |
[40] |
WANG W, WANG M, HUANG J, et al. Microwave-assisted catalytic pyrolysis of cellulose for phenol-rich bio-oil production[J]. Journal of the Energy Institute, 2019, 92(6):1997-2003.
doi: 10.1016/j.joei.2018.10.012 |
[41] |
苏银海, 张书平, 刘凌沁, 等. 活性炭催化热解纤维素协同制备酚类和合成气[J]. 化工学报, 2021, 72(10):5206-5217.
doi: 10.11949/0438-1157.20210416 |
SU Yinhai, ZHANG Shuping, LIU Lingqin, et al. Synergetic production of phenols and syngas from the catalytic pyrolysis of cellulose on activated carbon[J]. Chinese Journal of Chemical Engineering, 2021, 72(10):5206-5217. | |
[42] |
LIU S, CAO J, ZHAO X, et al. Effect of zeolite structure on light aromatics formation during upgrading of cellulose fast pyrolysis vapor[J]. Journal of the Energy Institute, 2019, 92(5):1567-1576.
doi: 10.1016/j.joei.2018.07.017 |
[43] |
WANG J, CAO J, ZHAO X, et al. Enhancement of light aromatics from catalytic fast pyrolysis of cellulose over bifunctional hierarchical HZSM-5 modified by hydrogen fluoride and nickel/hydrogen fluoride[J]. Bioresource Technology, 2019, 278:116-123.
doi: 10.1016/j.biortech.2019.01.059 |
[44] |
QIAO K, SHI X, ZHOU F, et al. Catalytic fast pyrolysis of cellulose in a microreactor system using hierarchical ZSM-5 zeolites treated with various alkalis[J]. Applied Catalysis A, General, 2017, 547:274-282.
doi: 10.1016/j.apcata.2017.07.034 |
[45] | ZHENG A, ZHAO Z, CHANG S, et al. Effect of crystal size of ZSM-5 on the aromatic yield and selectivity from catalytic fast pyrolysis of biomass[J]. Journal of Molecular Catalysis.A,Chemical, 2014:383-384. |
[46] |
MIHALCIK D, MULLEN C, AKWASI A. Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components[J]. Journal of Analytical and Applied Pyrolysis, 2011, 92(1):224-232.
doi: 10.1016/j.jaap.2011.06.001 |
[47] |
BRANCA C, BLASI C, GALGANO A. Pyrolysis of corncobs catalyzed by zinc chloride for furfural production[J]. Industrial & Engineering Chemistry Research, 2010, 49(20).9743-9752.
doi: 10.1021/ie101067v |
[48] |
LU Q, DONG C, ZHANG X, et al. Selective fast pyrolysis of biomass impregnated with ZnCl2 to produce furfural: Analytical Py-GC/MS study[J]. Journal of Analytical and Applied Pyrolysis, 2011, 90(2):204-212.
doi: 10.1016/j.jaap.2010.12.007 |
[49] |
BRANCA C, BLASI C, GALGANO A. Catalyst Screening for the Production of Furfural from corncob pyrolysis[J]. Energy & Fuels, 2012, 26(3),1520-1530.
doi: 10.1021/ef202038n |
[50] |
ZHANG H, LIU X, LU M, et al. Role of bronsted acid in selective production of furfural in biomass pyrolysis[J]. Bioresource Technology, 2014, 169(5):800-803.
doi: 10.1016/j.biortech.2014.07.053 |
[1] | LI Feifei, XU Huiwei, CUI Jindong. Research on the influencing factors of carbon emissions from petrochemical industry in Jilin Province based on the STIRPAT model [J]. Integrated Intelligent Energy, 2024, 46(8): 12-19. |
[2] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[3] | YANG Lei, WANG Rui, MA Lili, SUN Ning, LI Xuelian, CHEN Ting, WANG Shaorong, SHI Caixia. Research on Ca and Fe co-doped PrBaCo2O5+δ as a cathode material of solid oxide fuel cells [J]. Integrated Intelligent Energy, 2024, 46(7): 47-52. |
[4] | WANG Jinglong, WANG Hui, YANG Ye, ZHENG Yingying. Collaborative optimization method for power-heat-gas integrated energy systems considering multiple uncertainties [J]. Integrated Intelligent Energy, 2024, 46(4): 42-51. |
[5] | SU Panpan, WANG Xuetao, XING Lili, LI Haojie, LIU Mengjie. Research progress on preparation of liquid fuels by catalytic pyrolysis of pretreated biomass [J]. Integrated Intelligent Energy, 2024, 46(3): 1-11. |
[6] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
[7] | XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development [J]. Integrated Intelligent Energy, 2023, 45(9): 48-58. |
[8] | LIU Tianyang, GAO Yajing, XIE Dian, ZHAO Liang. Analysis on the construction path of functional zero-carbon parks [J]. Integrated Intelligent Energy, 2023, 45(8): 44-52. |
[9] | TENG Jialun, LI Hongzhong. Analysis on development and key technologies of integrated intelligent energy in the context of carbon neutrality [J]. Integrated Intelligent Energy, 2023, 45(8): 53-63. |
[10] | HU Kaiyong, LIU Feng, WU Xiujie, HU Yunqing, ZHENG Yi, TIAN Shen. Carbon-economy analysis on energy supply methods for rural buildings based on Trnsys energy consumption prediction [J]. Integrated Intelligent Energy, 2023, 45(8): 64-71. |
[11] | WANG Yongzhen, HAN Yibo, HAN Kai, HAN Juntao, SONG Kuo, ZHANG Lanlan. Researches on data center integrated energy systems based on knowledge graph [J]. Integrated Intelligent Energy, 2023, 45(7): 1-10. |
[12] | LI Yizhe, WANG Dan, JIA Hongjie, ZHOU Tianshuo, CAO Yitao, ZHANG Shuai, LIU Jiawei. Diverse modeling methods for energy hubs in integrated energy systems and their typical applications [J]. Integrated Intelligent Energy, 2023, 45(7): 22-29. |
[13] | WU Tong, WANG Shouxin, CHENG Xingxing, LIU Kunkun. Analysis of material and energy flows in biomass resource utilization under industrial symbiosis system [J]. Integrated Intelligent Energy, 2023, 45(7): 30-39. |
[14] | LIU Jian, LIU Yuxin, ZHUANG Hanyu. Key technologies and construction practices of virtual power plants [J]. Integrated Intelligent Energy, 2023, 45(6): 59-65. |
[15] | ZHAO Guotao, QIAN Guoming, SUN Yanbing, DING Quan, ZHU Haidong. Application of carbon-escape accounting system in integrated energy systems' low-carbon evaluation [J]. Integrated Intelligent Energy, 2023, 45(6): 73-80. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||