Integrated Intelligent Energy ›› 2023, Vol. 45 ›› Issue (3): 66-73.doi: 10.3969/j.issn.2097-0706.2023.03.009
• Energy Storage Technology • Previous Articles Next Articles
LI Qi1(), WANG Fangfang2, YANG Pengwei1, ZHAO Guangjin2, LIU Xiaona1, MA Shuangchen1,*(
)
Received:
2022-12-21
Revised:
2023-02-17
Published:
2023-03-25
Supported by:
CLC Number:
LI Qi, WANG Fangfang, YANG Pengwei, ZHAO Guangjin, LIU Xiaona, MA Shuangchen. Application status and development of energy storage technology in the context of flexibility transformation of thermal power plants[J]. Integrated Intelligent Energy, 2023, 45(3): 66-73.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2023.03.009
Table 2
Technical Performance of different energy storage technology
储能技术 | 能量密度/(W·h·kg-1) | 额定功率/MW | 能量转化效率/% | 响应时间(级别) | 储能周期(级别) |
---|---|---|---|---|---|
抽水蓄能 | 0.5~15.0 | 100.0~5 000.0 | 71~80 | 小时 | 数小时至数月 |
压缩空气储能 | 30.0~60.0 | 5.0~300.0 | 45~60 | 小时 | 数小时至数月 |
飞轮储能 | 10.0~30.0 | 0~1.5 | 86~94 | 毫秒至分钟 | 数秒至数分钟 |
电化学储能 | 2.0~15.0 | 0~8.0 | 70~90 | 秒至小时 | 数分钟至数天 |
蓄热储能 | 80.0~200.0 | 0~60.0 | — | 小时 | 数分钟至数月 |
氢/氨储能 | 350.0/45.0 | 0~6.0 | <50 | 小时 | 数小时至数月 |
Table 3
Economy, safety and environmental benefits of different energy storage technology
储能技术 | 使用寿命/a | 经济成本/(元·kW-1) | 安全与环境问题 |
---|---|---|---|
抽水蓄能 | 30~60 | 5 000~6 000 | 受地形和气候影响较大,主要问题是在水资源较少的西部地区补给水不好解决和平原地区难以实现 |
压缩空气储能 | 20~40 | 9 000 | 受到地形的影响,需要地下的储气空间;若使用罐装又会增加成本,空气成分复杂,在绝热压缩过程中存在安全隐患 |
飞轮储能 | ≤15 | 2 000~3 000 | 稳定性高,对环境无污染 |
电化学储能 | 5~15 | 2 000~4 000 | 电池的化学成分对环境污染严重,环境与安全问题是首先要解决的关键 |
蓄热储能 | 5~15 | 400~800 | 熔融盐等在替换后需要集中处理;放热过程不会对环境造成污染,稳定性较高,安全性可以保障 |
氢/氨储能 | 催化剂易中毒,设备寿命不高 | 20 000 | 无污染,安全性仍较难保证 |
[1] | 赵国涛, 钱国明, 王盛, 等. “双碳”目标下火电企业绿色低碳转型的对策分析[J]. 华电技术, 2021, 43(10):11-21. |
ZHAO Guotao, QIAN Guoming, WANG Sheng, et al. Analysis on solution for green and low-carbon transformation of thermal power enterprises to achieve carbon peak and carbon neutrality[J]. Huadian Technology, 2021, 43(10): 11-21. | |
[2] | 王成山, 于波, 肖峻, 等. 平滑可再生能源发电系统输出波动的储能系统容量优化方法[J]. 中国电机工程学报, 2012, 32(16):1-8. |
WANG Chengshan, YU Bo, XIAO Jun, et al. Sizing of energy storage systems for output smoothing of renewable energy systems[J]. Proceedings of the CSEE, 2012, 32(16):1-8. | |
[3] |
AKINYELE D O, RAYUDU R K. Review of energy storage technologies for sustainable power networks[J]. Sustainable Energy Technologies and Assessments, 2014, 8:74-91.
doi: 10.1016/j.seta.2014.07.004 |
[4] |
CHEN H S, CONG T N, YANG W, et al. Progress in electrical energy storage system:A critical review[J]. Progress in Natural Science, 2009, 19(3):291-312.
doi: 10.1016/j.pnsc.2008.07.014 |
[5] | 吴燕. 新型电力系统场景下抽水蓄能的应用探讨[J]. 电器工业, 2022,(6):61-64. |
WU Yan. Application of pumped storage in new electric power system[J]. China Electrical Equipment Industry, 2022,(6):61-64. | |
[6] | 李世超, 胡国稳, 卓灵书. 绿水青山间崛起大国重器[N]. 浙江日报,2021-07-05(008). |
[7] |
DENHOLM P, KULCINSKI G L. Life cycle energy requirements and greenhouse gas emissions from large scale energy storage systems[J]. Energy Conversion and Management, 2004, 45(13/14):2153-2172.
doi: 10.1016/j.enconman.2003.10.014 |
[8] |
FERTIG E, APT J. Economics of Compressed air energy storage to integrate wind power:A case study in ERCOT[J]. Energy Policy, 2011, 39(5):2330-2342.
doi: 10.1016/j.enpol.2011.01.049 |
[9] | 梅生伟, 李瑞, 陈来军, 等. 先进绝热压缩空气储能技术研究进展及展望[J]. 中国电机工程学报, 2018, 38(10):2893-2907,3140 |
MEI Shengwei, LI Rui, CHEN Laijun, et al. Research Progress and prospect of advanced compressed air energy storage technology[J]. Proceedings of the CSEE, 2018, 38(10):2893-2907,3140 | |
[10] | 童家麟, 洪庆, 吕洪坤, 等. 电源侧储能技术发展现状及应用前景综述[J]. 华电技术, 2021, 43(7): 17-23. |
TONG Jialin, HONG Qing, LYU Hongkun, et al. Development status and application prospect of power side energy storage technology[J]. Huadian Technology, 2021, 43(7): 17-23. | |
[11] | 刘文军, 贾东强, 曾昊旻, 等. 飞轮储能系统的发展与工程应用现状[J]. 微特电机, 2021, 49(12):52-58. |
LIU Wenjun, JIA Dongqiang, ZENG Haomin, et al. Development and engineering application of flywheel energy storage system[J]. Small & Special Electrical Machines, 2021, 49(12):52-58. | |
[12] | 王松岑, 来小康, 程时杰. 大规模储能技术在电力系统中的应用前景分析[J]. 电力系统自动化, 2013, 37(1):3-8,30. |
WANG Songcen, LAI Xiaokang, CHENG Shijie. An analysis of prospects for application of large-scale energy storage technology in power systems[J]. Automation of Electric Power Systems, 2013, 37(1):3-8,30. | |
[13] | 饶宇飞, 司学振, 谷青发, 等. 储能技术发展趋势及技术现状分析[J]. 电器与能效管理技术, 2020(10):7-15. |
RAO Yufei, SI Xuezhen, GU Qingfa, et al. Energy storage technology development trend and technology status analysis[J]. Electrical & Energy Management Technology, 2020(10):7-15. | |
[14] | 缪平, 姚祯, LEMMON John, 等. 电池储能技术研究进展及展望[J]. 储能科学与技术, 2020, 9(3):670-678. |
MIAO Ping, YAO Zhen, LEMMON John, et al. Current situations and prospects of energy storage batteries[J]. Energy Storage Science and Technology, 2020, 9(3):670-678. | |
[15] | 张纯江, 董杰, 刘君, 等. 蓄电池与超级电容混合储能系统的控制策略[J]. 电工技术学报, 2014, 29(4):334-340. |
ZHANG Chunjiang, DONG Jie, LIU Jun, et al. A control strategy for battery-ultracapacitor hybrid energy storage system[J]. Transactions of China Electrotechnical Society, 2014, 29(4):334-340. | |
[16] |
彭占磊, 杨之乐, 杨文强, 等. 电化学储能参与电力系统规划运行方法综述[J]. 综合智慧能源, 2022, 44(6): 37-44.
doi: 10.3969/j.issn.2097-0706.2022.06.004 |
PENG Zhanlei, YANG Zhile, YANG Wenqiang, et al. Review on planning and operation methods for power system with participation of electrochemical energy storage systems[J]. Integrated Intelligent Energy, 2022, 44(6): 37-44.
doi: 10.3969/j.issn.2097-0706.2022.06.004 |
|
[17] | 丁明, 陈忠, 苏建徽, 等. 可再生能源发电中的电池储能系统综述[J]. 电力系统自动化, 2013, 37(1):19-25,102. |
DING Ming, CHEN Zhong, SU Jianhui, et al. An overview of battery energy storage system for renewable energy generation[J]. Automation of Electric Power Systems, 2013, 37(1):19-25,102. | |
[18] | 袁治章, 刘宗浩, 李先锋. 液流电池储能技术研究进展[J]. 储能科学与技术, 2022, 11(9):2944-2958. |
YUAN Zhizhang, LIU Zonghao, LI Xianfeng. Research progress of flow battery technologies[J]. Energy Storage Science and Technology, 2022, 11(9):2944-2958. | |
[19] | 吴玉庭, 任楠, 马重芳. 熔融盐显热蓄热技术的研究与应用进展[J]. 储能科学与技术, 2013, 2(6):586-592. |
WU Yuting, REN Nan, MA Chongfang. Research and application of molten salts for sensible heat storage[J]. Energy Storage Science and Technology, 2013, 2(6):586-592. | |
[20] | 新华社. 我国首个大型太阳能光热示范电站投运[EB/OL].(2018-10-10)[2022-12-01]. http://www.gov.cn/xinwen/2018-10/10/content_5329291.htm. |
[21] | 浙江在线. 全国首个海岛“绿氢”示范工程正式投运[EB/OL].(2018-10-10)[2022-12-01]. http://www.gov.cn/xinwen/2018-10/10/content_5329291.htm. . |
[22] | 曹军文, 覃祥富, 耿嘎, 等. 氢气储运技术的发展现状与展望[J]. 石油学报(石油加工), 2021, 37(6):1461-1478. |
CAO Junwen, QIN Xiangfu, GENG Ga, et al. Current status and prospects of hydrogen storage and transportation technology[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2021, 37(6):1461-1478. | |
[23] | 侯玉婷, 李晓博, 刘畅, 等. 火电机组灵活性改造形势及技术应用[J]. 热力发电, 2018, 47(5):8-13. |
HOU Yuting, LI Xiaobo, LIU Chang, et al. Flexibility reform situation and technical application of thermal power units[J]. Thermal Power Generation, 2018, 47(5):8-13. | |
[24] | 许焕焕, 葛一, 李强, 等. 氨燃料及应用技术研究进展[J]. 东北电力大学学报, 2022, 42(2):1-13. |
XU Huanhuan, GE Yi, LI Qiang, et al. Research progress of ammonia fuel and application technology[J]. Journal of Northeast Electric Power University, 2022, 42(2):1-13. | |
[25] | LI Q L, FANG C, YANG Z H, et al. Modulating the oxidation state of titanium via dual anions substitution for efficient N2 electroreduction[J]. Small, 2022, 18(25): 2201343. |
[26] |
QI H, YANG J, LIU F, et al. Highly selective and robust single-atom catalyst Ru1/NC for reductive amination of aldehydes/ketones[J]. Nature Communications, 2021, 12(1):3295-3295.
doi: 10.1038/s41467-021-23429-w |
[27] | FU X, PEDERSEN J B, ZHOU Y, et al. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation[J]. Science, 2023, 6633(379):707-712. |
[28] |
LESMANA L, ZHANG Z, LI X, et al. NH3 as a transport fuel in internal combustion engines:A technical review[J]. Journal of Energy Resources Technology, 2019, 141(7):070703.
doi: 10.1115/1.4042915 |
[29] | 杨于驰, 张媛. 储能电池技术发展研究浅析[J]. 东方电气评论, 2022, 36(3):1-4. |
YANG Yuchi, ZHANG Yuan. Latest technological developments of energy storage batteries[J]. Dongfang Electric Review, 2022, 36(3):1-4. |
[1] | LI Feifei, XU Huiwei, CUI Jindong. Research on the influencing factors of carbon emissions from petrochemical industry in Jilin Province based on the STIRPAT model [J]. Integrated Intelligent Energy, 2024, 46(8): 12-19. |
[2] | LI Feifei, WANG Shuhong, CUI Jindong. Study on influencing factors of automobile carbon emissions from the perspective of whole life cycle: A case study of Jilin Province [J]. Integrated Intelligent Energy, 2024, 46(8): 20-27. |
[3] | WANG Zening, LI Wenzhong, LI Donghui, XU Taishan, YU Jun. Construction of the hierarchical autonomous power balance model for software-defined new power systems [J]. Integrated Intelligent Energy, 2024, 46(7): 1-11. |
[4] | YIN Linfei, MENG Yujie. Short-term wind power forecasting based on DenseNet convolutional neural networks [J]. Integrated Intelligent Energy, 2024, 46(7): 12-20. |
[5] | HE Fangbo, PEI Ligeng, ZHENG Rui, FAN Kangjian, ZHANG Xiaoman, LI Gengfeng. Construction of new power system in Shaanxi Province with the collaboration of source-network-load-storage [J]. Integrated Intelligent Energy, 2024, 46(7): 40-46. |
[6] | HUANG Xiaofan, LI Jiarui, LIU Hui, TANG Xiaoping, WANG Ziyao, WANG Tong. Comprehensive benefit analysis on the cascade utilization of a power battery system [J]. Integrated Intelligent Energy, 2024, 46(7): 63-73. |
[7] | WANG Jun, TIAN Hao, ZHAO Ergang, SHU Zhan, WAN Zijing. Low-carbon operation control on park-level integrated energy systems considering shared energy storage devices for electric vehicles [J]. Integrated Intelligent Energy, 2024, 46(6): 16-26. |
[8] | SU Panpan, WANG Xuetao, XING Lili, LI Haojie, LIU Mengjie. Research progress on preparation of liquid fuels by catalytic pyrolysis of pretreated biomass [J]. Integrated Intelligent Energy, 2024, 46(3): 1-11. |
[9] | LI Chengyun, YANG Dongsheng, ZHOU Bowen, YANG Bo, LI Guangdi. Digitization of new-type electric power systems based on digital twin technology [J]. Integrated Intelligent Energy, 2024, 46(2): 1-11. |
[10] | LI Yimin, DONG Haiying, DING Kun, WANG Jinyan. Multi-stage optimal allocation of energy storage considering long-term load probability prediction [J]. Integrated Intelligent Energy, 2024, 46(2): 19-27. |
[11] | CUI Jindong, WANG Yuqing. Research on user-side energy storage coordinated and optimized scheduling mechanism under cloud energy storage mode [J]. Integrated Intelligent Energy, 2023, 45(9): 18-25. |
[12] | XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development [J]. Integrated Intelligent Energy, 2023, 45(9): 48-58. |
[13] | YAN Limei, HU Wenshuo. Carbon flow tracking method of power systems based on the complex power distribution matrix [J]. Integrated Intelligent Energy, 2023, 45(8): 1-10. |
[14] | LI Feifei, XU Huiwei, WANG Shuhong, CUI Jindong. Measurement analysis on carbon emissions from agriculture industry in Jilin province and the influencing factors [J]. Integrated Intelligent Energy, 2023, 45(8): 36-43. |
[15] | LI Bohang, LI Hongzhong, ZHANG Minyuan. Low-carbon economic dispatch of integrated energy systems considering load characteristics [J]. Integrated Intelligent Energy, 2023, 45(8): 72-79. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||