Integrated Intelligent Energy ›› 2023, Vol. 45 ›› Issue (8): 1-10.doi: 10.3969/j.issn.2097-0706.2023.08.001
• Optimal Operation and Control • Next Articles
Received:
2023-05-15
Revised:
2023-06-21
Accepted:
2023-07-26
Published:
2023-08-25
Supported by:
CLC Number:
YAN Limei, HU Wenshuo. Carbon flow tracking method of power systems based on the complex power distribution matrix[J]. Integrated Intelligent Energy, 2023, 45(8): 1-10.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2023.08.001
Table 1
Power flow in different branches of the IEEE 14 bus system
支路编号 | 始端节点 | 末端节点 | 始端 | 末端 | ||
---|---|---|---|---|---|---|
P/MW | Q/(MV·A) | P/MW | Q/(MV·A) | |||
1 | 1 | 2 | 80.99 | -0.90 | -79.86 | -1.49 |
2 | 1 | 5 | 44.51 | 2.83 | -43.54 | -4.21 |
3 | 2 | 3 | 33.15 | 9.08 | -32.62 | -11.48 |
4 | 2 | 4 | 36.72 | -1.92 | -36.00 | 0.45 |
5 | 2 | 5 | 28.29 | -1.23 | -27.87 | -1.22 |
6 | 3 | 4 | -1.58 | -9.81 | 1.63 | 8.63 |
7 | 4 | 5 | -36.29 | 4.52 | 36.46 | -3.98 |
8 | 4 | 7 | 11.79 | -9.05 | -11.72 | 9.47 |
9 | 4 | 9 | 11.07 | 0.45 | -11.00 | 0.15 |
10 | 5 | 6 | 27.36 | 7.81 | -26.87 | -6.14 |
11 | 6 | 11 | 8.42 | 3.85 | -8.35 | -3.70 |
12 | 6 | 12 | 7.93 | 2.52 | -7.86 | -2.37 |
13 | 6 | 13 | 18.31 | 7.38 | -18.08 | -6.94 |
14 | 7 | 8 | -19.92 | -13.59 | 20.00 | 14.49 |
15 | 7 | 9 | 31.64 | 4.12 | -31.40 | -3.13 |
16 | 9 | 10 | 4.18 | 3.97 | -4.17 | -3.94 |
17 | 9 | 14 | 8.73 | 3.46 | -8.63 | -3.24 |
18 | 10 | 11 | -4.83 | -1.86 | 4.85 | 1.90 |
19 | 12 | 13 | 1.76 | 0.77 | -1.75 | -0.76 |
20 | 13 | 14 | 6.34 | 1.90 | -6.27 | -1.76 |
Table 2
Complex power distribution in the IEEE 14 bus system MV·A
节点编号 | 节点复功率 | 节点编号 | 节点复功率 |
---|---|---|---|
1 | 125.50+j1.93 | 8 | 20.00+j14.49 |
2 | 119.86+j18.63 | 9 | 42.41+j2.97 |
3 | 94.20+j19.00 | 10 | 9.00+j580.00 |
4 | 72.29-j4.97 | 11 | 8.35+j3.70 |
5 | 71.42+j5.43 | 12 | 7.86+j2.37 |
6 | 45.87+j21.25 | 13 | 19.84+j7.70 |
7 | 31.64+j4.12 | 14 | 14.90+j5.00 |
Table 3
Numbering for the IEEE 14 bus system
支路编号 | 支路 | 支路编号 | 支路 | 支路编号 | 支路 |
---|---|---|---|---|---|
1 | 1-2 | 15 | 4-12 | 29 | 21-22 |
2 | 1-3 | 16 | 12-13 | 30 | 15-23 |
3 | 2-4 | 17 | 12-14 | 31 | 22-24 |
4 | 3-4 | 18 | 12-15 | 32 | 23-24 |
5 | 2-5 | 19 | 12-16 | 33 | 24-25 |
6 | 2-6 | 20 | 14-15 | 34 | 25-26 |
7 | 4-6 | 21 | 16-17 | 35 | 25-27 |
8 | 5-7 | 22 | 15-18 | 36 | 28-27 |
9 | 6-7 | 23 | 18-19 | 37 | 27-29 |
10 | 6-8 | 24 | 19-20 | 38 | 27-30 |
11 | 6-9 | 25 | 10-20 | 39 | 29-30 |
12 | 6-10 | 26 | 10-17 | 40 | 8-28 |
13 | 9-11 | 27 | 10-21 | 41 | 6-28 |
14 | 9-10 | 28 | 10-22 |
[1] | 国家节能中心. 努力推动实现碳达峰碳中和目标[EB/OL].(2021-11-11)[2023-04-10]. https://www.ndrc.gov.cn/wsdwhfz/202111/t20211111_1303691_ext.html. |
[2] |
吴俊达, 赵毅, 孙文瑶. 适用于环境-经济调度需求的火电机组碳排放特性模型[J]. 综合智慧能源, 2022, 44(11):56-62.
doi: 10.3969/j.issn.2097-0706.2022.11.008 |
WU Junda, ZHAO Yi, SUN Wenyao. Carbon emission characteristics model of thermal power units for environmental economic dispatch[J]. Integrated Intelligent Energy, 2022, 44(11):56-62.
doi: 10.3969/j.issn.2097-0706.2022.11.008 |
|
[3] | LIU X L, QIN W T. Changes of carbon emission intensity from industrial energy use in China[C]//2010 International Conference on Management and Service Science. Wuhan:IEEE, 2010:1-4. |
[4] | 康重庆, 杜尔顺, 李姚旺, 等. 新型电力系统的“碳视角”:科学问题与研究框架[J]. 电网技术, 2022, 46(3):821-833. |
KANG Chongqing, DU Ershun, LI Yaowang, et al. Key scientific problems and research framework for carbon perspective research of new power systems[J]. Power System Technology, 2022, 46(3):821-833. | |
[5] | 陈丽霞, 孙弢, 周云, 等. 电力系统发电侧和负荷侧共同碳责任分摊方法[J]. 电力系统自动化, 2018, 42(19):106-111. |
CHEN Lixia, SUN Tao, ZHOU Yun, et al. Method for sharing carbon responsibility on the generation and load sides of power systems[J]. Power System Automation, 2018, 42(19):106-111. | |
[6] |
WANG C, LU Z, QIAO Y. A consideration of the wind power benefits in day-ahead scheduling of wind-coal intensive power systems[J]. IEEE Transactions on Power Systems, 2013, 28(1):236-245.
doi: 10.1109/TPWRS.2012.2205280 |
[7] |
KANG C, ZHOU T, CHEN Q, et al. Carbon emission flow from generation to demand:A network-based modeling[J]. IEEE Transactions on Smart Grid, 2015, 6(5):2386-2394.
doi: 10.1109/TSG.2015.2388695 |
[8] | 周天睿, 康重庆, 徐乾耀, 等. 电力系统碳排放流分析理论初探[J]. 电力系统自动化, 2012, 36(7):38-43,85. |
ZHOU Tianrui, KANG Chongqing, XU Qianyao, et al. Preliminary study on the theory of carbon emission flow analysis in power systems[J]. Power System Automation, 2012, 36(07):38-43,85. | |
[9] | 周天睿, 康重庆, 徐乾耀, 等. 电力系统碳排放流的计算方法初探[J]. 电力系统自动化, 2012, 36(11):44-49. |
ZHOU Tianrui, KANG Chongqing, XU Qianyao, et al. Preliminary study on the calculation method of carbon emissions in power systems[J]. Power System Automation, 2012, 36(11):44-49. | |
[10] | 周天睿, 康重庆, 徐乾耀, 等. 碳排放流在电力网络中分布的特性与机理分析[J]. 电力系统自动化, 2012, 36(15):39-44. |
ZHOU Tianrui, KANG Chongqing, XU Qianyao, et al. Characteristics and mechanism analysis of carbon emission flow distribution in power networks[J]. Power System Automation, 2012, 36(15):39-44. | |
[11] | 袁书林, 马瑞. 基于电力系统碳排放流理论的碳排放分摊模型研究[J]. 现代电力, 2014, 31(6):70-75. |
YUAN Shulin, MA Rui. A research on the allocation model of carbon emission in power system based on carbon emission flow theory[J]. Modern Electricity, 2014, 31(6):70-75. | |
[12] | 李保卫, 胡泽春, 宋永华, 等. 电力碳排放区域分摊的原则与模型[J]. 电网技术, 2012, 36(7):12-18. |
LI Baowei, HU Zechun, SONG Yonghua, et al. Principle and model for regional allocation of carbon emission from electricity sector[J]. Power Grid Technology, 2012, 36(7):12-18. | |
[13] | 康重庆, 程耀华, 孙彦龙, 等. 电力系统碳排放流的递推算法[J]. 电力系统自动化, 2017, 41(18):10-16. |
KANG Chongqing, CHENG Yaohua, SUN Yanlong, et al. Recursive algorithm for carbon emissions in power systems[J]. Power System Automation, 2017, 41(18):10-16. | |
[14] | 汪超群, 陈懿, 迟长云, 等. 基于潮流分布矩阵的电力系统碳排放流计算方法[J]. 科学技术与工程, 2022, 22(12):4835-4842. |
WANG Chaoqun, CHEN Yi, CHI Changyun, et al. Calculation method of power system carbon emission flow based on power flow distribution matrix[J]. Science Technology and Engineering, 2022, 22(12):4835-4842. | |
[15] | 龚昱, 蒋传文, 李明炜, 等. 基于复功率潮流追踪的电力用户侧碳排放计量[J]. 电力系统自动化, 2014, 38(17):113-117. |
GONG Yu, JIANG Chuanwen, LI Mingwei, et al. Carbon emission measurement on the power user side based on complex power flow tracking[J]. Power System Automation, 2014, 38(17):113-117. | |
[16] | 毕瀚文, 范晓舟, 肖海, 等. 支撑电力系统全环节碳流追踪的节点导纳矩阵算法研究[J/OL]. 中国电机工程学报, 2022:1-13[2023-04-10]. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C45S0n9fL2suRadTyEVl2pW9UrhTDCdPD65djwFi6aRxPYjNr3zE9bRl0R4J4rtpvLV3XkFUtq-SpmSbDvivIZEC&uniplatform=NZKPT. |
BI Hanwen, FAN Xiaozhou, XIAO Hai, et al. A node admittance matrix algorithm to support the carbon emission tracing model of whole power system[J/OL]. Chinese Journal of Electrical Engineering, 2022:1-13[2023-04-10]. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C45S0n9fL2suRadTyEVl2pW9UrhTDCdPD65djwFi6aRxPYjNr3zE9bRl0R4J4rtpvLV3XkFUtq-SpmSbDvivIZEC&uniplatform=NZKPT. | |
[17] | 张宁, 李姚旺, 黄俊辉, 等. 电力系统全环节碳计量方法与碳表系统[J/OL]. 电力系统自动化, 2023:1-11[2023-04-10].https://doi.org/10.7500/AEPS20221021001. |
ZHANG Ning, LI Yaowang, HUANG Junhui, et al. Carbon measurement method and carbon meter system for the entire process of power system[J/OL]. Power System Automation, 2023:1-11[2023-04-10].https://doi.org/10.7500/AEPS20221021001. | |
[18] |
FENG J, NAN J, WANG C, et al. Source-load coordinated low-carbon economic dispatch of electric-gas integrated energy system based on carbon emission flow theory[J]. Energies, 2022, 15(10):3641.
doi: 10.3390/en15103641 |
[19] | 吴培肇. 考虑网损的电网碳流分析及其可视化研究[D]. 北京: 华北电力大学, 2018. |
WU Peizhao. Research on carbon flow analysis and visualization of power grid considering network loss[D]. Beijing: North China Electric Power University, 2018. | |
[20] | 王萍萍, 赵永椿, 张军营, 等. 双碳目标下燃煤电厂碳计量方法研究进展[J]. 洁净煤技术, 2022, 28(10):170-183. |
WANG Pingping, ZHAO Yongchun, ZHANG Junying, et al. Research progress on carbon measurement methods of coal-fired power plants under the background of carbon neutrality[J]. Clean Coal Technology, 2022, 28(10):170-183. | |
[21] | IPCC. Special report on global warming of 1.5 ℃[M]. UK: Cambridge University Press, 2018. |
[1] | LI Feifei, XU Huiwei, CUI Jindong. Research on the influencing factors of carbon emissions from petrochemical industry in Jilin Province based on the STIRPAT model [J]. Integrated Intelligent Energy, 2024, 46(8): 12-19. |
[2] | WEI Xikai, TAN Xiaoshi, LIN Ming, CHENG Junjie, XIANG Keqi, DING Shuxin. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035 [J]. Integrated Intelligent Energy, 2024, 46(3): 72-78. |
[3] | KONG Huichao, WANG Wenzhong, LEI Yi, PENG Jing, LI Haibo. Electric power and energy rebalancing method for new power systems at receiving ends of industrial parks [J]. Integrated Intelligent Energy, 2024, 46(2): 68-74. |
[4] | TAN Jiuding, LI Shuaibing, LI Mingche, MA Xiping, KANG Yongqiang, DONG Haiying. Optimized scheduling of the power grid with participation of distributed microgrids considering their uncertainties [J]. Integrated Intelligent Energy, 2024, 46(1): 38-48. |
[5] | FANG Gang, WANG Jing, ZHANG Bobo, WANG Junzhe. Research on optimization algorithm of industrial park microgrid configuration based on Pareto solution set [J]. Integrated Intelligent Energy, 2024, 46(1): 49-55. |
[6] | HE Shuwei, HAN Yinghui, XU Wenbin, ZHANG Yuanxun, SHAN Yulong, YU Yunbo. Simulation for CO2 emissions from private vehicles in Beijing under different energy strategies [J]. Integrated Intelligent Energy, 2023, 45(8): 26-35. |
[7] | LI Fangyi, LI Nan, ZHOU Yan, XIE Wu. Prediction on the regional carbon emission factor for power generation based on multi-dimensional data and deep learning [J]. Integrated Intelligent Energy, 2023, 45(8): 11-17. |
[8] | LI Feifei, XU Huiwei, WANG Shuhong, CUI Jindong. Measurement analysis on carbon emissions from agriculture industry in Jilin province and the influencing factors [J]. Integrated Intelligent Energy, 2023, 45(8): 36-43. |
[9] | GE Leijiao, YU Weikun, ZHU Ruoyuan, WANG Guantao, BAI Xingzhen. Integrated energy system optimization scheduling considering improved stepped carbon trading mechanism and demand responses [J]. Integrated Intelligent Energy, 2023, 45(7): 97-106. |
[10] | HU Weilin, TAN Mengjiao, ZHU Yi, ZHANG Xuan, LI Hui, YANG Haiping. Research progress of biomass storage technologies [J]. Integrated Intelligent Energy, 2023, 45(5): 80-85. |
[11] | SUN Jian, QIN Yu, WANG Yinwu, WU Kexin, GE Zhihua. Study on the optimal temperature for flue gas waste heat recovery of the heat pump with new working fluid [J]. Integrated Intelligent Energy, 2023, 45(4): 19-25. |
[12] | CUI Jindong, ZHU Zengchen, LI Ruotong. Pricing for shared energy storage strategy on the demand side of power grid based on Nash equilibrium theory [J]. Integrated Intelligent Energy, 2023, 45(11): 55-61. |
[13] | WANG Kaiting, LI Xiaobin, ZHANG Hongna, LIU Shen, QU Kaiyang, LI Fengchen. Comprehensive evaluation for energy saving and emission reduction performance of turbulent drag reducing agent in heating systems [J]. Integrated Intelligent Energy, 2022, 44(9): 40-50. |
[14] | LI Bin, HU Chunjin, WANG Jing. Prediction method for adjustable load based on EEMD-BiLSTM [J]. Integrated Intelligent Energy, 2022, 44(9): 33-39. |
[15] | JIANG Ting, ZHAO Yajiao. Carbon emission reduction analysis for gas-based distributed integrated energy systems [J]. Integrated Intelligent Energy, 2022, 44(9): 27-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||