Integrated Intelligent Energy ›› 2023, Vol. 45 ›› Issue (5): 80-85.doi: 10.3969/j.issn.2097-0706.2023.05.009
• Collection and Storage of Biomass • Previous Articles
HU Weilin1,2(), TAN Mengjiao1,*(
), ZHU Yi1,2(
), ZHANG Xuan1(
), LI Hui1,2(
), YANG Haiping1,3(
)
Received:
2023-04-27
Revised:
2023-05-05
Published:
2023-05-25
Supported by:
CLC Number:
HU Weilin, TAN Mengjiao, ZHU Yi, ZHANG Xuan, LI Hui, YANG Haiping. Research progress of biomass storage technologies[J]. Integrated Intelligent Energy, 2023, 45(5): 80-85.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2023.05.009
[1] | 韩世旺, 赵颖, 张兴宇, 等. 面向碳中和的新型电力系统氢储能调峰技术研究[J]. 综合智慧能源, 2022, 41(9): 20-26. |
HAN Shiwang, ZHAO Ying, ZHANG Xingyu, et al. Researches on hydrogen storage peak-shaving technology for new power systems to achieve carbon neutrality[J]. Integrated Intelligent Energy, 2022, 44(9): 20-26.
doi: 10.3969/j.issn.2097-0706.2022.09.003 |
|
[2] |
谢典, 高亚静, 芦新波, 等. 能耗“双控”向碳排放“双控”转变的实施路径研究[J]. 综合智慧能源, 2022, 44(7): 73-80.
doi: 10.3969/j.issn.2097-0706.2022.07.009 |
XIE Dian, GAO Yajing, LU Xinbo, et al. Researches on hydrogen storage peak-shaving technology for new power systems to achieve carbon neutrality[J]. Integrated Intelligent Energy, 2022, 44(7): 73-80.
doi: 10.3969/j.issn.2097-0706.2022.07.009 |
|
[3] |
JIAN J, STEELE M K, THOMAS R Q. Constraining estimates of global soil respiration by quantifying sources of variability[J]. Global Change Biology, 2018, 24(9):4143-4159.
doi: 10.1111/gcb.14301 pmid: 29749095 |
[4] |
WERNER S. District heating and cooling in Sweden[J]. Energy, 2017, 126: 419-429.
doi: 10.1016/j.energy.2017.03.052 |
[5] | ANERUD E, ERIKSSON A. Evaluation of an improved design for large-scale storage of wood chip and bark[J]. Biomass and Bioenergy, 2021, 154: 106-255. |
[6] |
WENDT L M, ZHAO H. Review on bioenergy storage systems for preserving and improving feedstock value[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8.DOI:10.3389/fbioe.2020.00370.
doi: 10.3389/fbioe.2020.00370 |
[7] |
HOFMANN N, MENDEL T, SCHULMEYER F, et al. Drying effects and dry matter losses during seasonal storage of spruce wood chips under practical conditions[J]. Biomass and Bioenergy, 2018, 111:196-205.
doi: 10.1016/j.biombioe.2017.03.022 |
[8] |
WINDISCH J, VÄÄTÄINEN K, ANTTILA P, et al. Discrete-event simulation of an information-based raw material allocation process for increasing the efficiency of an energy wood supply chain[J]. Applied Energy, 2015, 149: 315-325.
doi: 10.1016/j.apenergy.2015.03.122 |
[9] |
ERIKSSON A, ELLASSON L, SIKANEN L, et al. Evaluation of delivery strategies for forest fuels applying a model for weather-driven analysis of forest fuel systems(WAFFS)[J]. Applied Energy, 2017, 188: 420-430.
doi: 10.1016/j.apenergy.2016.12.018 |
[10] |
VÄÄTÄINEN K, PRINZ R, MALINEN J, et al. Alternative operation models for using a feed‐in terminal as a part of the forest chip supply system for a CHP plant[J]. GCB Bioenergy, 2017, 9(11):1657-1673.
doi: 10.1111/gcbb.2017.9.issue-11 |
[11] |
JIRJIS R. Storage and drying of wood fuel[J]. Biomass and Bioenergy, 1995, 9(1-5): 181-190.
doi: 10.1016/0961-9534(95)00090-9 |
[12] |
WHITTAKER C, MACALPINE W, YATES N E, et al. Dry matter losses and methane emissions during wood chip storage: The impact on full life cycle greenhouse gas savings of short rotation coppice willow for heat[J]. Bioenergy Research, 2016, 9(3): 820-835.
doi: 10.1007/s12155-016-9728-0 pmid: 32355533 |
[13] | FERRERO F, MALOW M, NOLL M, et al. Temperature and gas evolution during large scale outside storage of wood chips[J]. European Journal of Wood and Wood Products, 2011, 9(4): 587-595. |
[14] |
ANERUD E, JIRJIS R, LARSSON G, et al. Fuel quality of stored wood chips—Influence of semi-permeable covering material[J]. Applied Energy, 2018, 231: 628-634.
doi: 10.1016/j.apenergy.2018.09.157 |
[15] |
PECENKA R, LENZ H, IDKER. Influence of the chip format on the development of mass loss, moisture content and chemical composition of poplar chips during storage and drying in open-air piles[J]. Biomass and Bioenergy, 2018, 116: 140-150.
doi: 10.1016/j.biombioe.2018.06.005 |
[16] |
PARI L, BRAMBILLA M, BISAGLIA C, et al. Poplar wood chip storage: Effect of particle size and breathable covering on drying dynamics and biofuel quality[J]. Biomass and Bioenergy, 2015, 81: 282-287.
doi: 10.1016/j.biombioe.2015.07.001 |
[17] |
ALAKOSKI E, JÄMSÉN M, AGAR D, et al. From wood pellets to wood chips, risks of degradation and emissions from the storage of woody biomass—A short review[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 376-383.
doi: 10.1016/j.rser.2015.10.021 |
[18] |
HE X, LAU A K, SOKHANSANJ S, et al. Dry matter losses in combination with gaseous emissions during the storage of forest residues[J]. Fuel, 2012, 95:662-664.
doi: 10.1016/j.fuel.2011.12.027 |
[19] |
KRIGSTIN S, WETZEL S. A review of mechanisms responsible for changes to stored woody biomass fuels[J]. Fuel, 2016, 175: 75-86.
doi: 10.1016/j.fuel.2016.02.014 |
[20] |
SHENG C, YAO C. Review on self-heating of biomass materials: Understanding and description[J]. Energy & Fuels, 2022, 36(2): 731-761.
doi: 10.1021/acs.energyfuels.1c03369 |
[21] |
ROUTA J, BRÄNNSTRÖM H, LAITILA J. Effects of storage on dry matter, energy content and amount of extractives in Norway spruce bark[J]. Biomass and Bioenergy, 2020, 143: 105821.
doi: 10.1016/j.biombioe.2020.105821 |
[22] |
MANZONE M, BALSARI P, SPINELLI R. Small-scale storage techniques for fuel chips from short rotation forestry[J]. Fuel, 2013, 109: 687-692.
doi: 10.1016/j.fuel.2013.03.006 |
[23] |
WANERUD E, JIRJIS R, LARSSON G, et al. Fuel quality of stored wood chips—Influence of semi-permeable covering material[J]. Applied Energy, 2018, 231: 628-634.
doi: 10.1016/j.apenergy.2018.09.157 |
[24] |
IWAN W, PETER N, ROLF G. Influence of storage on properties of wood chip material[J]. Journal of Forest Science, 2017, 63(4): 182-191.
doi: 10.17221/46/2016-JFS |
[25] | ANERUD E, ROUTA J, BERGSTRÖM D, et al. Fuel quality of stored spruce bark—Influence of semi-permeable covering material[J]. Fuel, 2020, 279: 118-467. |
[26] | ANERUD E, BERGSTRÖM D, ROUTA J, et al. Fuel quality and dry matter losses of stored wood chips— Influence of cover material[J]. Biomass and Bioenergy, 2021, 150: 106-109. |
[27] | DUMFORT S, PECENKA R, ASHER-JENULL J, et al. The potential of calcium hydroxide to reduce storage losses: A four months monitoring study of spruce wood chip piles at industrial scale[J]. Fuel, 2021, 298: 120-738. |
[28] |
ÖHMAN M, BOMAN C, HEDMAN H, et al. Slagging tendencies of wood pellet ash during combustion in residential pellet burners[J]. Biomass and Bioenergy, 2004, 27(6): 585-596.
doi: 10.1016/j.biombioe.2003.08.016 |
[29] |
XIONG S, BURVALL J, ORBERG H, et al. Slagging characteristics during combustion of corn stovers with and without kaolin and calcite[J]. Energy & Fuels, 2008, 22(5): 3465-3470.
doi: 10.1021/ef700718j |
[30] |
XIONG S, BOZAGHIAN M, LESTANDER T A, et al. Calcium oxide as an additive for both conservation and improvement of the combustion properties of energy grass: A preliminary study[J]. Biomass and Bioenergy, 2017, 99: 1-10.
doi: 10.1016/j.biombioe.2017.02.010 |
[31] |
GREFF B, SZIGETI J, NAGY Á, et al. Influence of microbial inoculants on co-composting of lignocellulosic crop residues with farm animal manure: A review[J]. Journal of Environmental Management, 2022, 302: 114088.
doi: 10.1016/j.jenvman.2021.114088 |
[32] |
WANG J, LIU H, FU B, et al. Trophic link between syntrophic acetogens and homoacetogens during the anaerobic acidogenic fermentation of sewage sludge[J]. Biochemical Engineering Journal, 2013, 70: 1-8.
doi: 10.1016/j.bej.2012.09.012 |
[33] | MODESTR J A, NAVANEETH B, MOHAN S V. Bio-electrocatalytic reduction of CO2: Enrichment of homoacetogens and pH optimization towards enhancement of carboxylic acids biosynthesis[J]. Journal of CO2 Utilization, 2015, 10: 78-87. |
[34] |
LEHTIKANGAS P. Storage effects on pelletised sawdust, logging residues and bark[J]. Biomass and Bioenergy, 2000, 19(5): 287-293.
doi: 10.1016/S0961-9534(00)00046-5 |
[35] |
SVEDBERG U, PETRINI C, JOHANSON G. Oxygen depletion and formation of toxic gases following sea transportation of logs and wood chips[J]. Annals of Occupational Hygiene, 2009, 53(8): 779-787.
doi: 10.1093/annhyg/mep055 pmid: 19737777 |
[36] |
BOER W D, FOLMAN L B, SUMMERBELL R C, et al. Living in a fungal world: Impact of fungi on soil bacterial niche development[J]. FEMS Microbiology Reviews, 2005, 29(4): 795-811.
pmid: 16102603 |
[37] |
SVEDBERG U RA, HÖGBERG H, HöGBERG J, et al. Emission of hexanal and carbon monoxide from storage of wood pellets, a potential occupational and domestic health hazard[J]. Annals of Occupational Hygiene, 2004(4):339-349.
pmid: 15191943 |
[38] |
ARSHADI M, GELDAI P,GREF, et al. Emission of volatile aldehydes and ketones from wood pellets under controlled conditions[J]. Annals of Occupational Hygiene, 2009, 53(8): 797-805.
doi: 10.1093/annhyg/mep058 pmid: 19666956 |
[39] |
陈勇, 苏军划, 汪洋, 等. 国内二氧化碳加氢合成甲烷应用可行性分析[J]. 综合智慧能源, 2022, 44(6): 86-90.
doi: 10.3969/j.issn.2097-0706.2022.06.010 |
CHEN Yong, SU Junhua, WANG Yang, et al. Feasibility analysis on methane production by CO2 hydrogenation in China[J]. Integrated Intelligent Energy, 2022, 44(6): 86-90.
doi: 10.3969/j.issn.2097-0706.2022.06.010 |
|
[40] |
BEDANEA H, AFZALM T, SOKHANSANJS. Simulation of temperature and moisture changes during storage of woody biomass owing to weather variabilityl[J]. Biomass and Bioenergy, 2011, 35(7): 3147-3151.
doi: 10.1016/j.biombioe.2011.04.008 |
[41] |
ERGÜL E, AYRILMIS N. Effect of outdoor storage conditions of wood chip pile on the technological properties of wood-based panel[J]. Biomass and Bioenergy, 2014, 61: 66-72.
doi: 10.1016/j.biombioe.2013.11.025 |
[42] |
LI X, KOSEKI H, MOMOTA M. Evaluation of danger from fermentation-induced spontaneous ignition of wood chips[J]. Journal of Hazardous Materials, 2006, 135(1-3): 15-20.
doi: 10.1016/j.jhazmat.2005.11.034 |
[43] |
HE X, LAU A K, SOKHANSANJ S, et al. Investigating gas emissions and dry matter loss from stored biomass residues[J]. Fuel, 2014, 134:159-165.
doi: 10.1016/j.fuel.2014.05.061 |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | WANG Zening, LI Wenzhong, LI Donghui, XU Taishan, YU Jun. Construction of the hierarchical autonomous power balance model for software-defined new power systems [J]. Integrated Intelligent Energy, 2024, 46(7): 1-11. |
[3] | HE Fangbo, PEI Ligeng, ZHENG Rui, FAN Kangjian, ZHANG Xiaoman, LI Gengfeng. Construction of new power system in Shaanxi Province with the collaboration of source-network-load-storage [J]. Integrated Intelligent Energy, 2024, 46(7): 40-46. |
[4] | XU Zhifan, LI Huasen, LI Wenyuan, YU Kai. State of charge prediction for lithium-ion batteries based on KF-RCMNN [J]. Integrated Intelligent Energy, 2024, 46(7): 81-86. |
[5] | WANG Jun, TIAN Hao, ZHAO Ergang, SHU Zhan, WAN Zijing. Low-carbon operation control on park-level integrated energy systems considering shared energy storage devices for electric vehicles [J]. Integrated Intelligent Energy, 2024, 46(6): 16-26. |
[6] | WANG Lin, KONG Xiaomin, ZHOU Zhongyu, LIU Jianping, WANG Xiaodong, ZHANG Ning. Distributed photovoltaic-energy storage reactive power optimization method for distribution networks under cloud energy storage mode [J]. Integrated Intelligent Energy, 2024, 46(6): 44-53. |
[7] | ZHANG Xunxiang, WU Jiekang, SUN Yehua, PENG Qijian. Capacity allocation optimization of hybrid energy storage systems considering fluctuation control on offshore wind power [J]. Integrated Intelligent Energy, 2024, 46(6): 54-65. |
[8] | ZHAO Changwei, WANG Hui, GU Zhicheng, LIU Xubin, ZHU Guangming, GE Leijiao. Key technologies of the evaluation on distributed wind-storage systems' frequency and voltage regulation capacities [J]. Integrated Intelligent Energy, 2024, 46(6): 78-87. |
[9] | YU Sheng, ZHOU Xia, SHEN Xicheng, DAI Jianfeng, LIU Zengji. Risk analysis on the source-grid-load-storage system affected by cyber attacks [J]. Integrated Intelligent Energy, 2024, 46(5): 41-49. |
[10] | GONG Gangjun, WANG Luyao, CHANG Zhuoyue, LIU Xu, XING Huidi. Security protection for integrated energy cyber physical systems based on energy hubs [J]. Integrated Intelligent Energy, 2024, 46(5): 65-72. |
[11] | LIU Xu, LU Jun, GONG Gangjun, HOU Zanyu, ZHANG Chunmeng, LIU Bo. Security protection for photovoltaic data acquisition and storage [J]. Integrated Intelligent Energy, 2024, 46(5): 73-80. |
[12] | LI Yun, ZHOU Shijie, HU Zheqian, LIANG Junyuan, XIAO Leiming. Optimal scheduling of integrated energy systems based on NSGA-Ⅱ-WPA [J]. Integrated Intelligent Energy, 2024, 46(4): 1-9. |
[13] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
[14] | WANG Jinglong, WANG Hui, YANG Ye, ZHENG Yingying. Collaborative optimization method for power-heat-gas integrated energy systems considering multiple uncertainties [J]. Integrated Intelligent Energy, 2024, 46(4): 42-51. |
[15] | SU Panpan, WANG Xuetao, XING Lili, LI Haojie, LIU Mengjie. Research progress on preparation of liquid fuels by catalytic pyrolysis of pretreated biomass [J]. Integrated Intelligent Energy, 2024, 46(3): 1-11. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||