Huadian Technology ›› 2021, Vol. 43 ›› Issue (5): 64-69.doi: 10.3969/j.issn.1674-1951.2021.05.010
• Energy Conservation and Environmental Protection • Previous Articles Next Articles
CONG Xingliang1(), XIE Hong1, SU Yang1, ZHANG Jun1, CHENG Yingjie2
Received:
2020-09-29
Revised:
2021-03-28
Published:
2021-05-25
CLC Number:
CONG Xingliang, XIE Hong, SU Yang, ZHANG Jun, CHENG Yingjie. Experimental study on deep peak-load shaving of a 660 MW ultra-supercritical secondary reheating unit[J]. Huadian Technology, 2021, 43(5): 64-69.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.1674-1951.2021.05.010
Tab.2
Main design parameters of the boiler
项目 | 单位 | 最大出力工况 | 额定负荷工况 |
---|---|---|---|
过热蒸汽流量 | t/h | 1 785.49 | 1 733.48 |
过热蒸汽出口压力 | MPa | 32.45 | 32.36 |
过热蒸汽出口温度 | ℃ | 605.0 | 605.0 |
给水压力 | MPa | 36.45 | 36.14 |
给水温度 | ℃ | 314.0 | 314.0 |
一次再热蒸汽流量 | t/h | 1 668.69 | 1 602.84 |
一次再热器出口压力 | MPa | 11.05 | 10.59 |
一次再热器出口温度 | ℃ | 623.0 | 623.0 |
一次再热器进口压力 | MPa | 11.40 | 10.93 |
一次再热器进口温度 | ℃ | 436.0 | 428.0 |
二次再热蒸汽流量 | t/h | 1 425.42 | 1 365.49 |
二次再热器出口压力 | MPa | 3.33 | 3.18 |
二次再热器出口温度 | ℃ | 623.0 | 623.0 |
二次再热器进口压力 | MPa | 3.52 | 3.36 |
二次再热器进口温度 | ℃ | 442.0 | 442.0 |
Tab.3
Control and operation parameters of the pulverizing system
名称 | 单位 | 数值 |
---|---|---|
A/C/D给煤机给煤量 | t/h | 29.9/28.8/30.9 |
A/C/D磨煤机电流 | A | 39.0/45.7/43.0 |
A/C/D磨煤机入口一次风量 | t/h | 85.7/87.7/84.8 |
A/C/D磨煤机入口一次风温 | ℃ | 143.5/126.3/192.3 |
A/C/D磨煤机出口风粉温度 | ℃ | 80.1/81.0/80.5 |
A/C/D磨煤机热一次风门开度 | % | 23.3/18.6/20.5 |
A/C/D磨煤机冷一次风门开度 | % | 44.6/47.0/33.8 |
A/C/D磨煤机液压加载压力 | MPa | 5.60/4.80/4.70 |
Tab.4
Control and operation parameters of air and flue gas system
名称 | 单位 | 数值 |
---|---|---|
空预器主电机电流A/B | A | 23.7/24.1 |
引风机动叶位置反馈A/B | % | 37.90/37.30 |
引风机电流A/B | A | 189.4/190.1 |
引风机入口压力A/B | kPa | -2.1/-2.1 |
送风机动叶位置反馈A/B | % | 22.4/21.6 |
送风机电流A/B | A | 55.1/55.1 |
送风机出口压力A/B | kPa | 0.9/0.9 |
一次风机动叶位置反馈A/B | % | 42.22/38.25 |
一次风机电流A/B | A | 102.7/100.2 |
一次风机出口压力A/B | kPa | 8.2/8.6 |
总风量 | t/h | 1 264.1 |
总一次风量 | t/h | 339.1 |
A/B 侧二次风量 | t/h | 482.3/442.7 |
[1] | 孙海峰, 王兆辉, 王建峰, 等. 600 MW超临界机组深度调峰安全可靠运行解析[J]. 华电技术, 2020,42(12):94-100. |
SUN Haifeng, WANG Zhaohui, WANG Jianfeng, et al. Analysis on safety and reliability of 600 MW supercritical units' deep peak regulation[J]. Huadian Technology, 2020,42(12):94-100. | |
[2] | 谢灵鸥, 徐琰, 胡建明, 等. 燃煤电厂30%额定负荷深度调峰技术研究及实践[J]. 能源研究与利用, 2020(3):33-36. |
XIE Ling'ou, XU Yan, HU Jianming, et al. Research and practice of 30% rated depth peak-load technology for coal-fired power plants[J]. Energy Research & Utilization, 2020(3):33-36. | |
[3] | 刘文胜, 吕洪坤, 蔡洁聪, 等. 600 MW亚临界锅炉30%额定负荷深度调峰试验研究[J]. 锅炉技术, 2019,50(4):59-65. |
LIU Wensheng, LYU Hongkun, CAI Jiecong, et al. Experimental study on 30% rated depth peak-load for a 600 MW sub-critical boiler[J]. Boiler Technology, 2019,50(4):59-65. | |
[4] | 华敏, 董益华, 项群扬, 等. 超临界660 MW燃煤机组深度调峰试验研究[J]. 电站系统工程, 2019(5):35-36. |
HUA min, DONG Yihua, XIANG Qunyang, et al. Research on deep load regulation of 660 MW supercritical coal-fired units[J]. Power System Engineering, 2019(5):35-36. | |
[5] | 王立, 王燕晋, 李战国, 等. 火力发电机组深度调峰试验及优化[J]. 发电设备, 2019,33(2):133-137. |
WANG Li, WANG Yanjin, LI Zhanguo, et al. Deep peak shaving tests and optimization for thermal power units[J]. Power Equipment, 2019,33(2):133-137. | |
[6] | 胡建根, 童家麟, 矛建波, 等. 典型燃煤锅炉深度调峰能力比较研究[J]. 锅炉技术, 2019,50(6):59-64. |
HU Jiangen, TONG Jialin, MAO Jianbo, et al. The research of the comparison of deep peak regulation capacity for typical coal-fired boilers[J]. Boiler Technology, 2019,50(6):59-64. | |
[7] | 于浩洋, 高明明, 张缦, 等. 循环流化床机组深度调峰性能分析与评价[J]. 热力发电, 2020,49(5):65-72. |
YU Haoyang, GAO Mingming, ZHANG Man, et al. Performance analysis and evaluation of deep peak-regulating for circulating fluidized bed units[J]. Thermal Power Generation, 2020,49(5):65-72. | |
[8] | 高林, 王林, 刘畅, 等. 火电机组深度调峰热工控制系统改造[J]. 热力发电, 2018,47(5):95-100. |
GAO Lin, WANG Lin, LIU Chang, et al. Thermal control system retrofit for deep peak load regulation of thermal power unit[J]. Thermal Power Generation, 2018,47(5):95-100. | |
[9] | 吴瑞康, 华敏, 秦攀, 等. 燃煤机组深度调峰对汽轮机设备的影响[J]. 热力发电, 2018,47(5):89-94. |
WU Ruikang, HUA Min, QIN Pan, et al. Influence of deep peak load regulation of coal-fired units on turbine equipment[J]. Thermal Power Generation, 2018,47(5):89-94. | |
[10] | 马玉华, 邢长青, 徐君诏, 等. 深度调峰负荷时亚临界自然循环锅炉水循环安全计算与分析[J]. 热力发电, 2018,47(10):108-114. |
MA Yuhua, XING Changqing, XU Junzhao, et al. Safety calculation and analysis for thermal-hydraulic circulation of a subcritical natural circulation boiler at severe peak load regulation[J]. Thermal Power Generation, 2018,47(10):108-114. | |
[11] | 周文台, 王克, 吕为智. 深度调峰下的再热汽温偏差调整试验研究[J]. 动力工程学报, 2019,39(9):700-704,730. |
ZHOU Wentai, WANG Ke, LÜ Weizhi. Experimental study on deviation adjustment of reheat steam temperatures under deep peak shaving conditions[J]. Journal of Chinese Society of Power Engineering, 2019,39(9):700-704,730. | |
[12] | 电站煤粉锅炉燃煤掺烧技术导则:DL/T 1445—2015[S]. |
[13] |
HUSTAD J E, SONJU O K. Experimental studies of lower flammability limits of gases and mixtures of elevated temperatures[J]. Combustion and Flame, 1988,71(3):283-294.
doi: 10.1016/0010-2180(88)90064-8 |
[14] | 李军, 周怀春, 柳朝晖, 等. 电站燃煤锅炉最低无油稳燃负荷预测[J]. 中国电机工程学报, 2000,20(2):73-77. |
LI Jun, ZHOU Huaichun, LIU Zhaohui, et al. Prediction of the minimum load of operation for utility pulverized coal-fired bolier[J]. Proceedings of the CSEE, 2000,20(2):73-77. | |
[15] | 马大卫, 王正风, 何军, 等. 安徽煤电深度调峰下机组煤耗和污染物排放特征研究[J]. 华电技术, 2019,41(12):1-7,15. |
MA Dawei, WANG Zhengfeng, HE Jun, et al. Study on the coal consumption and pollutant discharge characteristics of coal-fired units participating in deep peak-regulating operation in Anhui Province[J]. Huadian Technology, 2019,41(12):1-7,15. | |
[16] | 火电厂烟气脱硝技术导则:DL/T 296—2011[S]. |
[17] | 综合能耗计算通则:GB/T 2589—2008[S]. |
[18] | 刘福国, 蒋雪霞, 李志. 燃煤发电机组负荷率影响供电煤耗的研究[J]. 电站系统工程, 2008,24(4):47-49. |
LIU Fuguo, Jiang Xuexia, LI Zhi. Investigation on effects of generator load on coal consumption rate in fossil power plant[J]. Power System Engineering, 2008,24(4):47-49. | |
[19] | 吴思明, 童家麟, 吴跃森, 等. 某亚临界锅炉综合升级改造实践及其性能分析[J]. 华电技术, 2020,42(6):66-71. |
WU Siming, TONG Jialin, WU Yueseng, et al. Comprehensive upgrading reconstruction and performance analysis of a subcritical boiler[J]. Huadian Technology, 2020,42(6):66-71. |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
[3] | XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development [J]. Integrated Intelligent Energy, 2023, 45(9): 48-58. |
[4] | LIU Tianyang, GAO Yajing, XIE Dian, ZHAO Liang. Analysis on the construction path of functional zero-carbon parks [J]. Integrated Intelligent Energy, 2023, 45(8): 44-52. |
[5] | TENG Jialun, LI Hongzhong. Analysis on development and key technologies of integrated intelligent energy in the context of carbon neutrality [J]. Integrated Intelligent Energy, 2023, 45(8): 53-63. |
[6] | HU Kaiyong, LIU Feng, WU Xiujie, HU Yunqing, ZHENG Yi, TIAN Shen. Carbon-economy analysis on energy supply methods for rural buildings based on Trnsys energy consumption prediction [J]. Integrated Intelligent Energy, 2023, 45(8): 64-71. |
[7] | WANG Yongzhen, HAN Yibo, HAN Kai, HAN Juntao, SONG Kuo, ZHANG Lanlan. Researches on data center integrated energy systems based on knowledge graph [J]. Integrated Intelligent Energy, 2023, 45(7): 1-10. |
[8] | LI Yizhe, WANG Dan, JIA Hongjie, ZHOU Tianshuo, CAO Yitao, ZHANG Shuai, LIU Jiawei. Diverse modeling methods for energy hubs in integrated energy systems and their typical applications [J]. Integrated Intelligent Energy, 2023, 45(7): 22-29. |
[9] | LIU Jian, LIU Yuxin, ZHUANG Hanyu. Key technologies and construction practices of virtual power plants [J]. Integrated Intelligent Energy, 2023, 45(6): 59-65. |
[10] | ZHAO Guotao, QIAN Guoming, SUN Yanbing, DING Quan, ZHU Haidong. Application of carbon-escape accounting system in integrated energy systems' low-carbon evaluation [J]. Integrated Intelligent Energy, 2023, 45(6): 73-80. |
[11] | LIU Ziqi, SU Tingting, HE Jiayang, WANG Yu. Research on the optimal allocation of energy storage in distribution network based on multi-objective particle swarm optimization algorithm [J]. Integrated Intelligent Energy, 2023, 45(6): 9-16. |
[12] | ZHOU Shuxin, FAN Huailin, HU Xun. Preparation of biomass-based carbon materials and its application as electrodes in supercapacitors [J]. Integrated Intelligent Energy, 2023, 45(5): 1-12. |
[13] | FAN Dekai, FU Jie, LIU Yang, ZHOU Chunbao, DAI Jianjun. Review on the preparation of high-value chemicals from cellulose pyrolysis [J]. Integrated Intelligent Energy, 2023, 45(5): 24-31. |
[14] | LI Minxia, HOU Beiran, WANG Pai, DONG Liwei, TIAN Hua. Application and development of CO2 transcritical cycle heat pumps [J]. Integrated Intelligent Energy, 2023, 45(4): 12-18. |
[15] | WANG Yunyun, MA Zhicheng, ZHOU Qiang, DONG Haiying. Robust optimal scheduling of multi-energy cooperative game considering fairness [J]. Integrated Intelligent Energy, 2023, 45(2): 10-21. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||