Integrated Intelligent Energy ›› 2024, Vol. 46 ›› Issue (3): 29-34.doi: 10.3969/j.issn.2097-0706.2024.03.004
• Intelligent & Clean Heat Supply • Previous Articles Next Articles
MENG Qiang1(), TIAN Xi2, XIONG Yaxuan2,*(
)
Received:
2023-05-19
Revised:
2023-07-01
Published:
2024-03-25
Contact:
XIONG Yaxuan
E-mail:15652352383@163.com;xiongyaxuan@bucea.edu.cn
Supported by:
CLC Number:
MENG Qiang, TIAN Xi, XIONG Yaxuan. Study on preparation of shape-stable phase-change materials based on cellular concrete and their performances[J]. Integrated Intelligent Energy, 2024, 46(3): 29-34.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2024.03.004
Table 2
Characteristic peaks of Na2CO3,sintered WCC and SSPCMs
材料 | 特征峰值 (cm-1) |
---|---|
Na2CO3 | 3 413,3 235,2 030,1 777,1 617,1 446,880 |
烧结WCC | 3 551,3 414,3 237,2 031,1 638, 1 618,1 384,1 023,939,904 |
NC3 | 3 551,3 414,3 236,2 032,1 637, 1 617,1 438,1 384,1 031,877 |
NC4 | 3 554,3 413,3 235,2 031,1 638,1 617, 1 438,1 384,1 031,934,896 |
NC5 | 3 552,3 413,3 235,2 031,1 638, 1 617,1 449,1 385,1 031,934 |
[1] | 张俊锋, 许文娟, 王跃锜, 等. 面向碳中和的中国碳排放现状调查与分析[J]. 华电技术, 2021, 43(10):1-10. |
ZHANG Junfeng, XU Wenjuan, WANG Yueqi, et al. Investigation and analysis on carbon emission status in China on the path to carbon neutrality[J]. Huadian Technology, 2021, 43(10):1-10. | |
[2] |
LI Q, LI C, DU Z, et al. A review of performance investigation and enhancement of shell and tube thermal energy storage device containing molten salt based phase change materials for medium and high temperature applications[J]. Applied Energy, 2019, 255:113806.
doi: 10.1016/j.apenergy.2019.113806 |
[3] |
YU Q H, JIANG Z, CONG L, et al. A novel low-temperature fabrication approach of composite phase change materials for high temperature thermal energy storage[J]. Applied Energy, 2019, 237:367-77.
doi: 10.1016/j.apenergy.2018.12.072 |
[4] |
LI Q, CONG L, ZHANG X S, et al. Fabrication and thermal properties investigation of aluminium based composite phase change material for medium and high temperature thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2020, 211:110511.
doi: 10.1016/j.solmat.2020.110511 |
[5] |
SARI A, BICER A, AL-SULAIMAN F A, et al. Diatomite/CNTs/PEG composite PCMs with shape-stabilized and improved thermal conductivity:Preparation and thermal energy storage properties[J]. Energy and Buildings, 2018, 164:166-175.
doi: 10.1016/j.enbuild.2018.01.009 |
[6] |
XU G Z, LENG G H, YANG C Y, et al. Sodium nitrate—Diatomite composite materials for thermal energy storage[J]. Solar Energy, 2017, 146:494-502.
doi: 10.1016/j.solener.2017.03.003 |
[7] |
LI C C, ZHANG B, LIU Q X. N-eicosane/expanded graphite as composite phase change materials for electro-driven thermal energy storage[J]. Journal of Energy Storage, 2020, 29:101339.
doi: 10.1016/j.est.2020.101339 |
[8] |
JIANG Z, JIANG F, LI C, et al. A form stable composite phase change material for thermal energy storage applications over 700 ℃[J]. Applied Sciences, 2019, 9(5):814.
doi: 10.3390/app9050814 |
[9] |
MEMON S, LIAO W Y, YANG S Q, et al. Development of composite PCMs by incorporation of paraffin into various building materials[J]. Materials, 2015, 8:499-518.
doi: 10.3390/ma8020499 pmid: 28787953 |
[10] |
SARI A, BICER A. Thermal energy storage properties and thermal reliability of some fatty acid esters/building material composites as novel form-stable PCMs[J]. Solar Energy Materials and Solar Cells, 2012, 101:114-122.
doi: 10.1016/j.solmat.2012.02.026 |
[11] |
DENG J H, LI W B, JIANG D H. Study on binary fatty acids/sepiolite composite phase change material[J]. Advanced Materials Research, 2011, 374-377:807-810.
doi: 10.4028/www.scientific.net/AMR.374-377 |
[12] |
WANG T Y, ZHANG T Y, XU G Z, et al. A new low-cost high-temperature shape-stable phase change material based on coal fly ash and K2CO3[J]. Solar Energy Materials and Solar Cells, 2020, 206:110328.
doi: 10.1016/j.solmat.2019.110328 |
[13] |
王燕, 黄云, 姚华, 等. 太阳盐/钢渣定型复合相变储热材料的制备与性能研究[J]. 过程工程学报, 2021, 21(3):332-340.
doi: 10.12034/j.issn.1009-606X.220096 |
WANG Yan, HUANG Yun, YAO Hua, et al. Fabrication and characterization of form-stable solar salt/steel slag composite phase change material for thermal energy storage[J]. The Chinese Journal of Process Engineering, 2021, 21(3):332-340.
doi: 10.12034/j.issn.1009-606X.220096 |
|
[14] |
ANAGNOSTOPOULOS A, NAVARRO M E, STEFANIDOU M, et al. Red mud-molten salt composites for medium-high temperature thermal energy storage and waste heat recovery applications[J]. Journal of Hazardous Materials, 2021, 413:125407.
doi: 10.1016/j.jhazmat.2021.125407 |
[15] |
LI R G, ZHU J Q, ZHOU W B, et al. Thermal compatibility of sodium nitrate/expanded perlite composite phase change materials[J]. Applied Thermal Engineering, 2016, 103:452-458.
doi: 10.1016/j.applthermaleng.2016.03.108 |
[16] |
SANG L X, LI F, XU Y W. Form-stable ternary carbonates/MgO composite material for high temperature thermal energy storage[J]. Solar Energy, 2019, 180:1-7.
doi: 10.1016/j.solener.2019.01.002 |
[17] | 朴春爱, 权宗刚, 唐玉娇. 发泡混凝土微结构的研究进展[J]. 硅酸盐通报, 2020, 39(9):2699-2705. |
PIAO Chunai, QUAN Zonggang, TANG Yujiao. Research progress on microstructure of foamed concrete[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(9):2699-2705. |
[1] | YANG Lei, WANG Rui, MA Lili, SUN Ning, LI Xuelian, CHEN Ting, WANG Shaorong, SHI Caixia. Research on Ca and Fe co-doped PrBaCo2O5+δ as a cathode material of solid oxide fuel cells [J]. Integrated Intelligent Energy, 2024, 46(7): 47-52. |
[2] | MENG Qiang, YANG Yang, XIONG Yaxuan. Study on thermal stability of molten salt composites added with SiO2 nanoparticles [J]. Integrated Intelligent Energy, 2023, 45(9): 32-39. |
[3] | ZHANG Zhongping, LIU Heng, XIE Yurong, ZHAO Dazhou, MOU Min, CHEN Qiao. Application and research progress of molten salt heat storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 40-47. |
[4] | ZHAO Guotao, QIAN Guoming, SUN Yanbing, DING Quan, ZHU Haidong. Application of carbon-escape accounting system in integrated energy systems' low-carbon evaluation [J]. Integrated Intelligent Energy, 2023, 45(6): 73-80. |
[5] | LI Qingyang, LI Chao, JIANG Yuchen, HU Xun. Progress in utilization of semi-coke as solid fuel [J]. Integrated Intelligent Energy, 2023, 45(5): 13-23. |
[6] | SU Yanxin, WANG Xuetao, XING Lili, LI Haojie, ZHANG Xingyu. Effect of precursors on pine sawdust steam reforming over Ni/ZSM-5 catalyst for hydrogen production [J]. Integrated Intelligent Energy, 2023, 45(5): 32-38. |
[7] | JIANG Yuchen, LI Qingyang, HU Xun. Research progress of biochar prepared by microwave pyrolysis technology [J]. Integrated Intelligent Energy, 2023, 45(5): 46-62. |
[8] | DOU Zihui, LIU Jingxia, LI Baoli. Study on the solar-assisted ground-source heat pump system with seasonal heat storage in cold regions [J]. Integrated Intelligent Energy, 2023, 45(4): 52-58. |
[9] | LIN Lianjie, FAN Yi, LI Jing, ZHAO Xudong, LI Yunhai. Operation performance analysis on a novel solar heat recovery quasi two-stage compression heat pump system under typical weather conditions [J]. Integrated Intelligent Energy, 2023, 45(4): 74-80. |
[10] | LIU Yuanyuan, LIU Fangfang, JIA Tianxiang, HAN Zhao, SHANG Yongqiang, JIANG Shu. Design of the integrated energy heating(cooling) system for a commercial and residential park and its economy analysis [J]. Integrated Intelligent Energy, 2023, 45(12): 20-28. |
[11] | JI Mingda, GOU Yujun, ZHONG Xiaohui. Performance simulation and analysis on photovoltaic and photothermal integration system in Baiyin area [J]. Integrated Intelligent Energy, 2023, 45(12): 43-52. |
[12] | GENG Zhi, CHEN Keyu, LIU Yuanyuan, ZHANG Bin, WANG Jianli, SHI Tianqing, LI Fang, GU Yujiong. Complementarity analysis of solar energy and gas turbine combined cycle [J]. Integrated Intelligent Energy, 2023, 45(12): 79-86. |
[13] | TANG Qiwen, SHEN Qi, ZHU Jun, SU Yijing. Mechanism design and operation practice of Zhejiang frequency regulation ancillary service market [J]. Integrated Intelligent Energy, 2022, 44(9): 71-77. |
[14] | XU Yangsen, ZHANG Lei, BI Lei. Development and challenges of intermediate-temperature proton-conducting solid oxide fuel cells [J]. Integrated Intelligent Energy, 2022, 44(8): 68-74. |
[15] | YAN Xueling, PAN Xiang, REN Keke, HUANG Rong, CHENG Jigui, HONG Tao. Preparation and performance study of tubular protonic ceramic fuel cells [J]. Integrated Intelligent Energy, 2022, 44(8): 86-90. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||