Integrated Intelligent Energy ›› 2023, Vol. 45 ›› Issue (5): 32-38.doi: 10.3969/j.issn.2097-0706.2023.05.004
• Application of Biomass Materials • Previous Articles Next Articles
SU Yanxin1(), WANG Xuetao1,*(
), XING Lili1, LI Haojie1, ZHANG Xingyu2
Received:
2022-11-26
Revised:
2023-04-20
Published:
2023-05-25
Supported by:
CLC Number:
SU Yanxin, WANG Xuetao, XING Lili, LI Haojie, ZHANG Xingyu. Effect of precursors on pine sawdust steam reforming over Ni/ZSM-5 catalyst for hydrogen production[J]. Integrated Intelligent Energy, 2023, 45(5): 32-38.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2023.05.004
[1] |
PARTHASARATHY P, NARAYANAN K S. Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield—A review[J]. Renewable Energy, 2014, 66:570-579.
doi: 10.1016/j.renene.2013.12.025 |
[2] | 张运洲, 鲁刚, 王芃, 等. 能源安全新战略下能源清洁化率和终端电气化率提升路径分析[J]. 中国电力, 2020, 53(2):1-8. |
ZHANG Yunzhou, LU Gang, WANG Peng, et al. Analysis on the improvement path of non-fossil energy consumption proportion and terminal electrification rate under the new energy security strategy[J]. Electric Power, 2020, 53(2):1-8. | |
[3] |
RAHMAN M M, KHAN I, FIELD D L, et al. Powering agriculture: Present status, future potential, and challenges of renewable energy applications[J]. Renewable Energy, 2022, 188:731-749.
doi: 10.1016/j.renene.2022.02.065 |
[4] | 胡小夫, 王凯亮, 沈建永, 等. 基于生物固碳技术的CO2资源化利用研究进展[J]. 华电技术, 2021, 43(6): 79-85. |
HU Xiaofu, WANG Kailiang, SHEN Jianyong, et al. Research progress of CO2 resource utilization based on biological carbon sequestration technology[J]. Huadian Technology, 2021, 43(6): 79-85. | |
[5] |
KOSTYNIUK A, BAJEC D, LIKOZAR B. Catalytic hydrogenation, hydrocracking and isomerization reactions of biomass tar model compound mixture over Ni-modified zeolite catalysts in packed bed reactor[J]. Renewable Energy, 2021, 167:409-424.
doi: 10.1016/j.renene.2020.11.098 |
[6] | 周瑜枫, 王学涛, 梁彦正, 等. Fe基催化剂在生物质催化气化中制富氢气体的应用[J]. 华电技术, 2021, 43(10): 31-42. |
ZHOU Yufeng, WANG Xuetao, LIANG Yanzheng, et al. Research progress of Fe based catalysts for hydrogen-rich gas production from biomass catalytic gasification[J]. Huadian Technology, 2021, 43(10): 31-42. | |
[7] |
WANG Y, HUANG L, ZHANG T, et al. Hydrogen-rich syngas production from biomass pyrolysis and catalytic reforming using biochar-based catalysts[J]. Fuel, 2022, 313:123006.
doi: 10.1016/j.fuel.2021.123006 |
[8] |
AKUBO K, NAHIL M A, WILLIAMS P T. Pyrolysis-catalytic steam reforming of agricultural biomass wastes and biomass components for production of hydrogen/syngas[J]. Journal of the Energy Institute, 2019, 92(6):1987-1996.
doi: 10.1016/j.joei.2018.10.013 |
[9] |
KUMAR A, PRASAD R, SHARMA Y C. Ethanol steam reforming study over ZSM-5 supported cobalt versus nickel catalyst for renewable hydrogen generation[J]. Chinese Journal of Chemical Engineering, 2019, 27(3):677-684.
doi: 10.1016/j.cjche.2018.03.036 |
[10] |
VIZCAINO A J, CARRERO A, CALLES J A. Ethanol steam reforming on Mg- and Ca-modified Cu-Ni/SBA-15 catalysts[J]. Catalysis Today, 2009, 146(1-2):63-70.
doi: 10.1016/j.cattod.2008.11.020 |
[11] |
ZHANG J, WANG Y, WU D. Hydrogen production from partial oxidation and steam reforming of n-octane over alumina-supported Ni and Ni-Pd catalysts[J]. The Canadian Journal of Chemical Engineering, 2003, 81(2):307-311.
doi: 10.1002/cjce.5450810219 |
[12] |
MIAO Z, HU Z, JIANG E, et al. Hydrogen-rich syngas production by chemical looping reforming on crude wood vinegar using Ni-modified HY zeolite oxygen carrier[J]. Fuel, 2020, 279:118547.
doi: 10.1016/j.fuel.2020.118547 |
[13] |
HE S, MEI Z, LIU N, et al. Ni/SBA-15 catalysts for hydrogen production by ethanol steam reforming: Effect of nickel precursor[J]. International Journal of Hydrogen Energy, 2017, 42(21):1-10.
doi: 10.1016/j.ijhydene.2016.11.073 |
[14] |
CLAUDIO-PIEDRAS A, RAMIREZ-ZAMORA R M, ALCANTAR-VÁZQUEZ B C, et al. One dimensional Pt/CeO2-NR catalysts for hydrogen production by steam reforming of methanol: Effect of Pt precursor[J]. Catalysis Today, 2021, 360:55-62.
doi: 10.1016/j.cattod.2019.08.013 |
[15] |
YU Z, HU X, JIA P, et al. Steam reforming of acetic acid over nickel-based catalysts: The intrinsic effects of nickel precursors on behaviors of nickel catalysts[J]. Applied Catalysis B: Environmental, 2018, 237:538-553.
doi: 10.1016/j.apcatb.2018.06.020 |
[16] |
FU P, ZHANG A, LUO S, et al. Catalytic steam reforming of biomass-derived acetic acid over two supported Ni catalysts for hydrogen-rich syngas production[J]. ACS Omega, 2019, 4(8):13585-13593.
doi: 10.1021/acsomega.9b01985 pmid: 31460488 |
[17] |
HU Z, WENG C, CHEN C, et al. Catalytic decomposition of ammonia to COx-free hydrogen over Ni/ZSM-5 catalysts: A comparative study of the preparation methods[J]. Applied Catalysis A, General, 2018, 562:49-57.
doi: 10.1016/j.apcata.2018.05.038 |
[18] | 钟朋展, 孟凡会, 崔晓曦, 等. 镍盐前体对Ni-Fe/γ-Al2O3催化剂甲烷化性能的影响[J]. 化工进展, 2013, 32(8):1845-1848,1875. |
ZHONG Pengzhan, MENG Fanhui, CUI Xiaoxi, et al. Catalytic performance of Ni-Fe/γ-Al2O3 catalyst prepared from different nickel precursors for CO methanation[J]. Chemical Industry and Engineering Progress, 2013, 32(8):1845-1848,1875. | |
[19] |
WEN X, XU L, CHEN M, et al. Exploring the influence of nickel precursors on constructing efficient Ni-based CO2 methanation catalysts assisted with in-situ technologies[J]. Applied Catalysis B: Environmental, 2021, 297:120486.
doi: 10.1016/j.apcatb.2021.120486 |
[20] | WANG X, SU X, ZHANG Q, et al. Effect of additives on Ni-based catalysts for hydrogen-enriched production from steam reforming of biomass[J]. Energy Technology, 2020, 8(9):1-8. |
[21] |
WEI L, HAIJE W, KUMAR N, et al. Influence of nickel precursors on the properties and performance of Ni impregnated zeolite 5A and 13X catalysts in CO2 methanation[J]. Catalysis Today, 2021, 362:35-46.
doi: 10.1016/j.cattod.2020.05.025 |
[22] |
DONPHAI W, PHICHAIRATANAPHONG O, KLYSUBUM W, et al. Hydrogen and carbon allotrope production through methane cracking over Ni/bimodal porous silica catalyst:Effect of nickel precursor[J]. International Journal of Hydrogen Energy, 2018, 43(48):21798-21809.
doi: 10.1016/j.ijhydene.2018.10.049 |
[23] | RAZALI M H, BUANG N A, BAKAR W. CO2/H2 methanation reactivity of nickel oxide based catalyst prepared from different nickel salt precursors[J]. AIP Conference Proceedings, 2010, 1217(1):195-199. |
[24] |
RENDA S, RICCA A, PALMA V. Precursor salts influence in ruthenium catalysts for CO2 hydrogenation to methane[J]. Applied Energy, 2020, 279:115767.
doi: 10.1016/j.apenergy.2020.115767 |
[25] | 职国娟, 王英勇, 靳国强, 等. 镍盐前躯体对CO2甲烷化Ni/SiC催化剂性能的影响[J]. 天然气化工(C1化学与化工), 2012, 37(5):10-14,42. |
ZHI Guojuan, WANG Yingyong, JIN Guoqiang, et al. Effect of nickel precursors on catalytic performance of Ni/SiC catalysts for CO2 methanation[J]. Natural Gas Chemical Industry, 2012, 37(5):10-14,42. | |
[26] |
OSINKIN D A. Precursor of Pr2NiO4+δ as a highly effective catalyst for the simultaneous promotion of oxygen reduction and hydrogen oxidation reactions in solid oxide electrochemical devices[J]. International Journal of Hydrogen Energy, 2021, 46(48):24546-24554.
doi: 10.1016/j.ijhydene.2021.05.022 |
[27] |
SAHELI S, REZVANI A R, MALEKZADEH A. Study of structural and catalytic properties of Ni catalysts prepared from inorganic complex precursor for Fischer-Tropsch synthesis[J]. Journal of Molecular Structure, 2017, 1144:166-172.
doi: 10.1016/j.molstruc.2017.05.027 |
[28] | 张微, 葛庆杰, 徐恒泳. 镍前驱体对非负载型镍催化剂上甲烷分解活性的影响[J]. 催化学报, 2010, 31(11):1358-1362. |
ZHANG Wei, GE Qingjie, XU Hengyong. Influence of nickel precursors on catalytic activity of non-supported Ni for methane decomposition[J]. Chinese Journal of Catalysis, 2010, 31(11):1358-1362.
doi: 10.3724/SP.J.1088.2010.00430 |
|
[29] | 李小华, 陈磊, 樊永胜, 等. Zn-P复合改性HZSM-5在线催化热解获取生物油的研究[J]. 燃料化学学报, 2015, 43(5):567-574. |
LI Xiaohua, CHEN Lei, FAN Yongsheng, et al. Study on preparation of re fine d oil by upgrading of pyrolytic vapors using Zn-P/HZSM-5 zeolite[J]. Journal of Fuel Chemistry and Technology, 2015, 43(5):567-574.
doi: 10.1016/S1872-5813(15)30015-3 |
|
[30] | RAZALI M H, BUANG N A, BAKAR W. CO2/H2 methanation reactivity of nickel oxide based catalyst prepared from different nickel salt precursors[C]// AIP Conference. American Institute of Physics, 2010:195-199. |
[1] | WANG Jinglong, WANG Hui, YANG Ye, ZHENG Yingying. Collaborative optimization method for power-heat-gas integrated energy systems considering multiple uncertainties [J]. Integrated Intelligent Energy, 2024, 46(4): 42-51. |
[2] | SU Panpan, WANG Xuetao, XING Lili, LI Haojie, LIU Mengjie. Research progress on preparation of liquid fuels by catalytic pyrolysis of pretreated biomass [J]. Integrated Intelligent Energy, 2024, 46(3): 1-11. |
[3] | HU Kaiyong, LIU Feng, WU Xiujie, HU Yunqing, ZHENG Yi, TIAN Shen. Carbon-economy analysis on energy supply methods for rural buildings based on Trnsys energy consumption prediction [J]. Integrated Intelligent Energy, 2023, 45(8): 64-71. |
[4] | WU Tong, WANG Shouxin, CHENG Xingxing, LIU Kunkun. Analysis of material and energy flows in biomass resource utilization under industrial symbiosis system [J]. Integrated Intelligent Energy, 2023, 45(7): 30-39. |
[5] | ZHOU Shuxin, FAN Huailin, HU Xun. Preparation of biomass-based carbon materials and its application as electrodes in supercapacitors [J]. Integrated Intelligent Energy, 2023, 45(5): 1-12. |
[6] | LI Qingyang, LI Chao, JIANG Yuchen, HU Xun. Progress in utilization of semi-coke as solid fuel [J]. Integrated Intelligent Energy, 2023, 45(5): 13-23. |
[7] | FAN Dekai, FU Jie, LIU Yang, ZHOU Chunbao, DAI Jianjun. Review on the preparation of high-value chemicals from cellulose pyrolysis [J]. Integrated Intelligent Energy, 2023, 45(5): 24-31. |
[8] | JIANG Yuchen, LI Qingyang, HU Xun. Research progress of biochar prepared by microwave pyrolysis technology [J]. Integrated Intelligent Energy, 2023, 45(5): 46-62. |
[9] | CHEN Wenxuan, LI Xueqin, LIU Peng, LI Yanling, LU Yan, LEI Tingzhou. Study on pyrolysis law of catalytic biomass tar model compounds [J]. Integrated Intelligent Energy, 2023, 45(5): 63-69. |
[10] | HU Weilin, TAN Mengjiao, ZHU Yi, ZHANG Xuan, LI Hui, YANG Haiping. Research progress of biomass storage technologies [J]. Integrated Intelligent Energy, 2023, 45(5): 80-85. |
[11] | LI Yanhong, SHEN Mingzhong, ZHENG Liming, YE Jun. Review on single atom catalysts for hydrogen production from water electrolysis [J]. Integrated Intelligent Energy, 2023, 45(3): 74-80. |
[12] | ZHU Shasha, LI Zongbao, DENG Yatian, WANG Xin, JIA Lichao. Application of alloy nanoparticles in the anodes of hydrocarbon solid oxide fuel cells [J]. Integrated Intelligent Energy, 2022, 44(8): 33-42. |
[13] | HU Changzheng, WANG Yabo, LIU Shengchun. Application of MEA solution in the CO2 capture in biomass power plants and coal-fired power plants [J]. Integrated Intelligent Energy, 2022, 44(6): 78-85. |
[14] | CHEN Yong, SU Junhua, WANG Yang. Feasibility analysis on methane production by CO2 hydrogenation in China [J]. Integrated Intelligent Energy, 2022, 44(6): 86-90. |
[15] | Yimin ZHANG, Jianli KANG, Naiqin ZHAO. Development and perspectives of the transition metal-based catalysts for water splitting [J]. Integrated Intelligent Energy, 2022, 44(5): 15-29. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||