Integrated Intelligent Energy ›› 2022, Vol. 44 ›› Issue (6): 78-85.doi: 10.3969/j.issn.2097-0706.2022.06.009
• CO2 Capture and Utilization • Previous Articles Next Articles
HU Changzheng(), WANG Yabo(
), LIU Shengchun*(
)
Received:
2022-03-24
Revised:
2022-04-25
Published:
2022-06-25
Contact:
LIU Shengchun
E-mail:tjcu_hcz@163.com;wang_yabo@tjcu.edu.cn;liushch@tjcu.edu.cn
CLC Number:
HU Changzheng, WANG Yabo, LIU Shengchun. Application of MEA solution in the CO2 capture in biomass power plants and coal-fired power plants[J]. Integrated Intelligent Energy, 2022, 44(6): 78-85.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2022.06.009
Table 3
Comparison between the experimental and simulation results
项目 | 试验1 | 试验2 | |
---|---|---|---|
CO2去除率 | 试验值/% | 75.9 | 51.3 |
模拟值/% | 77.6 | 52.0 | |
误差/% | 2.2 | 1.4 | |
CO2捕集率 | 试验值/% | 76.0 | 51.2 |
模拟值/% | 77.2 | 52.0 | |
误差/% | 1.6 | 1.6 | |
CO2质量 分数 | 试验值/% | 99.6 | 99.6 |
模拟值/% | 99.5 | 99.5 | |
误差/% | 0.1 | 0.1 | |
再沸器 负荷 | 试验值//kW | 6.5 | 6.8 |
模拟值//kW | 6.7 | 6.5 | |
误差/% | 3.1 | 4.4 | |
再沸器单位能耗 | 试验值/(GJ·t-1) | 5.0 | 4.0 |
模拟值/(GJ·t-1) | 5.1 | 3.8 | |
误差/% | 2.0 | 5.0 |
[1] | 张晋宾, 周四维. 碳中和体系解读[J]. 华电技术, 2021, 43(6): 1-10. |
ZHANG Jinbin, ZHOU Siwei. Interpretation on carbon neutrality system[J]. Huadian Technology, 2021, 43(6): 1-10. | |
[2] |
LUIS P. Use of monoethanolamine(MEA) for CO2 capture in a global scenario: Consequences and alternatives[J]. Desalination, 2016, 380: 93-99.
doi: 10.1016/j.desal.2015.08.004 |
[3] | 赵国涛, 钱国明, 王盛. “双碳”目标下绿色电力低碳发展的路径分析[J]. 华电技术, 2021, 43(6): 11-20. |
ZHAO Guotao, QIAN Guoming, WANG Sheng. Analysis on green and low-carbon development path for power industry to realize carbon peak and carbon neutrality[J]. Huadian Technology, 2021, 43(6): 11-20. | |
[4] | 蔡博峰, 李琦, 张贤, 等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021)——中国CCUS路径研究[R]. 生态环境部环境规划院,中国科学院武汉岩土力学研究所,中国21世纪议程管理中心, 2021. |
[5] | 何建坤. 碳达峰/碳中和目标导向下能源和经济的低碳转型[J]. 环境经济研究, 2021, 6(1): 1-9. |
HE Jiankun. Low-carbon transition of energy and economy under the goal of carbon neutrality of carbon peak[J]. Journal of Environmental Economics, 2021, 6(1):1-9. | |
[6] |
ABBAS T, ISSA M, ILINCA A. Biomass cogeneration technologies: A review[J]. Journal of Sustainable Bioenergy Systems, 2020, 10(1): 1-15.
doi: 10.4236/jsbs.2020.101001 |
[7] |
FARAJOLLAHI H, HOSSAINPOUR S. Application of organic Rankine cycle in integration of thermal power plant with post-combustion CO2 capture and compression[J]. Energy, 2017, 118: 927-936.
doi: 10.1016/j.energy.2016.10.124 |
[8] |
KHALIFA O, ALKHATIB I I I, BAHAMON D, et al. Modifying absorption process configurations to improve their performance for post-combustion CO2 capture—What have we learned and what is still missing?[J]. Chemical Engineering Journal, 2022, 430:133096.
doi: 10.1016/j.cej.2021.133096 |
[9] | 董贝贝. CO2混合物热物性及生物能中化学吸收碳捕集技术经济分析[D]. 天津: 天津商业大学, 2021. |
[10] |
HAMMOND G P, SPARGO J. The prospects for coal-fired power plants with carbon capture and storage: A UK perspective[J]. Energy Conversion and Management, 2014, 86: 476-489.
doi: 10.1016/j.enconman.2014.05.030 |
[11] |
SAITO S, UDATSU M, KITAMURA H, et al. Development and evaluation of a new amine solvent at the Mikawa CO2 capture pilot plant[J]. Energy Procedia, 2014, 51: 176-183.
doi: 10.1016/j.egypro.2014.07.020 |
[12] |
SHAHBAZ M, ALNOUSS A, GHIAT I, et al. A comprehensive review of biomass based thermochemical conversion technologies integrated with CO2 capture and utilisation within BECCS networks[J]. Resources, Conservation and Recycling, 2021, 173(3):105734.
doi: 10.1016/j.resconrec.2021.105734 |
[13] |
ALI U, FONT-PALMA C, AKRAM M, et al. Comparative potential of natural gas, coal and biomass fired power plant with post-combustion CO2 capture and compression[J]. International Journal of Greenhouse Gas Control, 2017, 63: 184-193.
doi: 10.1016/j.ijggc.2017.05.022 |
[14] |
DINCA C, SLAVU N, CORMOŞ C C, et al. CO2 capture from syngas generated by a biomass gasification power plant with chemical absorption process[J]. Energy, 2018, 149: 925-936.
doi: 10.1016/j.energy.2018.02.109 |
[15] |
ZANG G, JIA J, TEJASVI S, et al. Techno-economic comparative analysis of biomass integrated gasification combined cycles with and without CO2 capture[J]. International Journal of Greenhouse Gas Control, 2018, 78: 73-84.
doi: 10.1016/j.ijggc.2018.07.023 |
[16] |
POUR N, WEBLEY P A, COOK P J. A sustainability framework for bioenergy with carbon capture and storage (BECCs) technologies[J]. Energy Procedia, 2017, 114: 6044-6056.
doi: 10.1016/j.egypro.2017.03.1741 |
[17] |
NOTZ R, MANGALAPALLY H P, HASSE H. Post combustion CO2 capture by reactive absorption: Pilot plant description and results of systematic studies with MEA[J]. International Journal of Greenhouse Gas Control, 2012, 6: 84-112.
doi: 10.1016/j.ijggc.2011.11.004 |
[18] | 白玫. 百年中国电力工业发展:回顾、经验与展望——写于纪念中国共产党成立100周年之际[J]. 价格理论与实践, 2021(5): 4-10. |
BAI Mei. China's power industry development: Review, experience and prospects—Writing to commemorating the 100th anniversary of the founding of the Communist Party of China[J]. Price: Theory & Practice, 2021(5): 4-10. | |
[19] | 全球能源互联网发展合作组织. 中国“十四五”电力发展规划研究[R]. 北京: 全球能源互联网发展合作组织, 2020. |
[20] | NOOKUEA W, DONG B, GUSTAFSSON K, et al. Differences between capturing CO2 from the combustion of biomass and coal by using chemical absorption[C]// Applied Energy Symposium 2020:Low Carbon Cities and Urban Energy Systems, 2020. |
[21] |
SU X, ZHANG L, XIAO Y, et al. Evaluation of a flue gas cleaning system of a circulating fluidized bed incineration power plant by the analysis of pollutant emissions[J]. Powder Technology, 2015, 286: 9-15.
doi: 10.1016/j.powtec.2015.07.038 |
[22] |
HETLAND J, YOWARGANA P, LEDUC S, et al. Carbon negative emissions: Systemic impacts of biomass conversion[J]. International Journal of Greenhouse Gas Control, 2016, 49: 330-342.
doi: 10.1016/j.ijggc.2016.03.017 |
[23] |
LÓPEZ R, FERNÁNDEZ C, MARTÍNEZ O, et al. Techno-economic analysis of a 15 MW corn-rape oxy-combustion power plant[J]. Fuel Processing Technology, 2016, 142: 296-304.
doi: 10.1016/j.fuproc.2015.10.020 |
[24] | FERON, P H M. Absorption-based post-combustion capture of carbon dioxide[M]. Duxford(UK): Woodhead Publishing, 2016: 519-551. |
[25] |
AFKHAMIPOUR M, MOFARAHI M. Review on the mass transfer performance of CO2 absorption by amine-based solvents in low- and high-pressure absorption packed columns[J]. RSC Advances, 2017, 7(29): 17857-17872.
doi: 10.1039/C7RA01352C |
[26] |
MANGALAPALLY H P, NOTZ R, HOCH S, et al. Pilot plant experimental studies of post combustion CO2 capture by reactive absorption with MEA and new solvents[J]. Energy Procedia, 2009, 1(1): 963-970.
doi: 10.1016/j.egypro.2009.01.128 |
[27] |
SAKWATTANAPONG R, AROONWILAS A, VEAWAB A. Behavior of reboiler heat duty for CO2 capture plants using regenerable single and blended alkanolamines[J]Industrial & Engineering Chemistry Research, 2005, 44(12), 4465-4473.
doi: 10.1021/ie050063w |
[28] | LÉONARD G. Optimal design of a CO2 capture unit with assessment of solvent degradation[D]. Liege (Belgium): University of Liege, 2013. |
[29] |
LÉONARD G, CROSSET C, TOYE D, et al. Influence of process operating conditions on solvent thermal and oxidative degradation in post-combustion CO2 capture[J]. Computers & Chemical Engineering, 2015, 83: 121-130.
doi: 10.1016/j.compchemeng.2015.05.003 |
[30] | 张东旺, 史鉴, 杨海瑞, 等. 碳定价背景下生物质发电前景分析[J]. 洁净煤技术, 2022, 28(3): 23-31. |
ZHANG Dongwang, SHI Jian, YANG Hairui, et al. Prospect of biomass power generation under the background of carbon pricing[J]. Clean Coal Technology, 2022, 28(3):23-31. | |
[31] | 张东旺, 范浩东, 赵冰, 等. 国内外生物质能源发电技术应用进展[J]. 华电技术, 2021, 43(3): 70-75. |
ZHANG Dongwang, FAN Haodong, ZHAO Bing, et al. Development of biomass power generation technology at home and abroad[J]. Huadian Technology, 2021, 43(3): 70-75. | |
[32] | 谭厚章, 刘洋, 王学斌, 等. 生物质成型燃料规模化掺烧技术及应用分析[J]. 洁净煤技术, 2021, 27(S2): 272-277. |
TAN Houzhang, LIU Yang, WANG Xuebin, et al. High efficiency and large scale biomass briquette co-firing and its application[J]. Clean Coal Technology, 2021, 27(S2): 272-277. | |
[33] | 兰凤春, 李晓宇, 龙辉. 欧洲大型燃煤锅炉耦合生物质发电技术综述[J]. 华电技术, 2020, 42(10): 88-94. |
LAN Fengchun, LI Xiaoyu, LONG Hui. Review of biomass power generation technology coupled with large coal-fired boilers in Europe[J]. Huadian Technology, 2020, 42(10): 88-94. | |
[34] | 北京中煤时代科技发展有限公司. 动力煤现货价格[EB/OL].(2022-03-20) [2022-04-21]. https://www.cctd.com.cn/index.php?m=content&c=index&a=lists&catid=614. |
[35] | EMBER. The latest data on EU ETS carbon prices[EB/OL].(2022-03-20) [2022-04-21]. https://ember-climate.org/data/data-tools/carbon-price-viewer. |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | WANG Jinglong, WANG Hui, YANG Ye, ZHENG Yingying. Collaborative optimization method for power-heat-gas integrated energy systems considering multiple uncertainties [J]. Integrated Intelligent Energy, 2024, 46(4): 42-51. |
[3] | SU Panpan, WANG Xuetao, XING Lili, LI Haojie, LIU Mengjie. Research progress on preparation of liquid fuels by catalytic pyrolysis of pretreated biomass [J]. Integrated Intelligent Energy, 2024, 46(3): 1-11. |
[4] | YU Haibin, DONG Ye, WENG Jinde, HU Xinchen, YAN Wei, WU Difan. Research on the application and economic benefits of 5G slice in the urban distribution network [J]. Integrated Intelligent Energy, 2024, 46(1): 75-83. |
[5] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
[6] | XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development [J]. Integrated Intelligent Energy, 2023, 45(9): 48-58. |
[7] | LI Fangyi, LI Nan, ZHOU Yan, XIE Wu. Prediction on the regional carbon emission factor for power generation based on multi-dimensional data and deep learning [J]. Integrated Intelligent Energy, 2023, 45(8): 11-17. |
[8] | LI Pengzhen, JIA Bingke, LIU Yanhong, WU Zhenlong. Modified active disturbance rejection control on the post-combustion CO2 capture system [J]. Integrated Intelligent Energy, 2023, 45(8): 18-25. |
[9] | LIU Tianyang, GAO Yajing, XIE Dian, ZHAO Liang. Analysis on the construction path of functional zero-carbon parks [J]. Integrated Intelligent Energy, 2023, 45(8): 44-52. |
[10] | TENG Jialun, LI Hongzhong. Analysis on development and key technologies of integrated intelligent energy in the context of carbon neutrality [J]. Integrated Intelligent Energy, 2023, 45(8): 53-63. |
[11] | HU Kaiyong, LIU Feng, WU Xiujie, HU Yunqing, ZHENG Yi, TIAN Shen. Carbon-economy analysis on energy supply methods for rural buildings based on Trnsys energy consumption prediction [J]. Integrated Intelligent Energy, 2023, 45(8): 64-71. |
[12] | WANG Yongzhen, HAN Yibo, HAN Kai, HAN Juntao, SONG Kuo, ZHANG Lanlan. Researches on data center integrated energy systems based on knowledge graph [J]. Integrated Intelligent Energy, 2023, 45(7): 1-10. |
[13] | LI Yizhe, WANG Dan, JIA Hongjie, ZHOU Tianshuo, CAO Yitao, ZHANG Shuai, LIU Jiawei. Diverse modeling methods for energy hubs in integrated energy systems and their typical applications [J]. Integrated Intelligent Energy, 2023, 45(7): 22-29. |
[14] | WU Tong, WANG Shouxin, CHENG Xingxing, LIU Kunkun. Analysis of material and energy flows in biomass resource utilization under industrial symbiosis system [J]. Integrated Intelligent Energy, 2023, 45(7): 30-39. |
[15] | LIU Yixian, WANG Yubin, YANG Qiang. High fault-tolerant distribution network state estimation method based on gated graph neural network [J]. Integrated Intelligent Energy, 2023, 45(6): 1-8. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||