Integrated Intelligent Energy ›› 2023, Vol. 45 ›› Issue (3): 74-80.doi: 10.3969/j.issn.2097-0706.2023.03.010
• Energy Storage Technology • Previous Articles Next Articles
LI Yanhong(), SHEN Mingzhong(
), ZHENG Liming, YE Jun
Received:
2022-09-22
Revised:
2023-02-10
Published:
2023-03-25
Supported by:
CLC Number:
LI Yanhong, SHEN Mingzhong, ZHENG Liming, YE Jun. Review on single atom catalysts for hydrogen production from water electrolysis[J]. Integrated Intelligent Energy, 2023, 45(3): 74-80.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2023.03.010
[1] | 李子烨, 劳力云, 王谦. 制氢技术发展现状及新技术的应用进展[J]. 现代化工, 2021, 41(7):86-89,94. |
LI Ziye, LAO Liyun, WANG Qian. Development status of hydrogen production technologies and application advances of new technologies[J]. Modern Chemical Industry, 2021, 41(7): 86-89,94. | |
[2] | 王春霞, 宋兆毅, 倪基平, 等. 电催化析氢催化剂研究进展[J]. 化工进展, 2021, 40(10):5523-5534. |
WANG Chunxia, SONG Zhaoyi, NI Jiping, et al. Progress of electrocatalytic hydrogen evolution reaction catalysts[J]. Chemical Industry and Engineering Progress, 2021, 40(10):5523-5534. | |
[3] | 吴明珠, 杨义斌, 卢立娟, 等. 钢基电解水制氢催化剂的研究进展[J]. 世界科技研究与发展, 2022, 44(4):466-481. |
WU Mingzhu, YANG Yibin, LU Lijuan, et al. Research process of steel-based electrocatalysts for water splitting to produce hydrogen[J]. World Sci-Tech R & D, 2022, 44(4):466-481. | |
[4] | GUO Y, GAN L, SHANG C, et al. A cake-style CoS2@MoS2/RGO hybrid catalyst for efficient hydrogen evolution[J]. Advanced Functional Materials, 2017, 27(5): 1602699. |
[5] |
ZHAO D, SUN K, CHEONG W C, et al. Synergistically interactive pyridinic-N-MoP sites: Identified active centers for enhanced hydrogen evolution in alkaline solution[J]. Angewandte Chemie, 2020, 132(23): 9067-9075.
doi: 10.1002/ange.v132.23 |
[6] | YANG C, ZHAO R, XIANG H, et al. Ni-activated transition metal carbides for efficient hydrogen evolution in acidic and alkaline solutions[J]. Advanced Energy Materials, 2020, 10(37): 2002260. |
[7] | 孟凡, 张惠铃, 姬姗姗, 等. 高效电解水制氢发展现状与技术优化策略[J]. 黑龙江大学自然科学学报, 2021, 38(6):702-713. |
MENG Fan, ZHANG Huiling, JI Shanshan, et al. Progress and technology strategies of hydrogen evolution reaction by high efficiency water electrolysis[J]. Journal of Natural Science of Heilongjiang University, 2021, 38(6):702-713. | |
[8] |
LI T, CHEN Y, HU W, et al. Ionic liquid in situ functionalized carbon nanotubes as metal-free catalyst for efficient electrocatalytic hydrogen evolution reaction[J]. Nanoscale, 2021, 13(8): 4444-4450.
doi: 10.1039/D0NR08817J |
[9] |
ITO Y, CONG W, FUJITA T, et al. High catalytic activity of nitrogen and sulfur co-doped nanoporous graphene in the hydrogen evolution reaction[J]. Angewandte Chemie International Edition, 2015, 54(7): 2131-2136.
doi: 10.1002/anie.201410050 |
[10] | 《物理化学学报》编辑部. 专访催化领域代表人物——王双印教授[J]. 物理化学学报, 2021, 37(7): 10-12. |
Editorial Office of Acta Physico-Chimica Sinica. Interview with the leader of catalysis: Prof. Shuangyin Wang[J]. Acta Physico-Chimica Sinica, 2021, 37(7): 10-12. | |
[11] |
ZHAO D, ZHUANG Z, CAO X, et al. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation[J]. Chemical Society Reviews, 2020, 49(7): 2215-2264.
doi: 10.1039/c9cs00869a pmid: 32133461 |
[12] |
YIN P, YAO T, WU Y, et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts[J]. Angewandte Chemie, 2016, 128(36): 10958-10963.
doi: 10.1002/ange.201604802 |
[13] |
HANSEN J N, PRATS H, TOUDAHL K K, et al. Is there anything better than Pt for HER?[J]. ACS energy letters, 2021, 6(4): 1175-1180.
doi: 10.1021/acsenergylett.1c00246 pmid: 34056107 |
[14] |
FU Q, SALTSBURG H, FLYTZANI-STEPHANOPOULOS M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts[J]. Science, 2003, 301(5635): 935-938.
doi: 10.1126/science.1085721 pmid: 12843399 |
[15] | HOSSAIN M D, LIU Z, ZHUANG M, et al. Rational design of graphene-supported single atom catalysts for hydrogen evolution reaction[J]. Advanced Energy Materials, 2019, 9(10): 1803689. |
[16] | PENG Y, LU B, CHEN S. Carbon-supported single atom catalysts for electrochemical energy conversion and storage[J]. Advanced Materials, 2018, 30(48): 1801995. |
[17] |
吴文浩, 雷文, 王丽琼, 等. 单原子催化剂合成方法[J]. 化学进展, 2020, 32(1): 23-32.
doi: 10.7536/PC190704 |
WU Wenhao, LEI Wen, WANG Liqiong, et al. Preparation of single atom catalysts[J]. Progress in Chemistry, 2020, 32(1): 23-32.
doi: 10.7536/PC190704 |
|
[18] |
CHENG N, STAMBULA S, WANG D, et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction[J]. Nature communications, 2016, 7(1): 13638.
doi: 10.1038/ncomms13638 |
[19] |
YIN X P, WANG H J, TANG S F, et al. Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution[J]. Angewandte Chemie International Edition, 2018, 57(30): 9382-9386.
doi: 10.1002/anie.201804817 |
[20] | ZENG X, SHUI J, LIU X, et al. Single-atom to single-atom grafting of Pt1 onto Fe-N4 center: Pt1@Fe-N-C multifunctional electrocatalyst with significantly enhanced properties[J]. Advanced energy materials, 2018, 8(1): 1701345. |
[21] |
LIU D, LI X, CHEN S, et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution[J]. Nature Energy, 2019, 4(6):512-518.
doi: 10.1038/s41560-019-0402-6 |
[22] | 张振, 李苇杭, 杨英楠, 等. 活性炭负载金属铂单原子催化材料的电解析氢性能研究[J]. 现代化工, 2022, 42(1): 95-99. |
ZHANG Zhen, LI Weihang, YANG Yingnan, et al. Performance of active carbon supported monatomic platinum catalytic materials in electrolytic hydrogen evolution[J]. Modern Chemical Industry, 2022, 42(1): 95-99. | |
[23] |
LIU W, XU Q, YAN P, et al. Fabrication of a single-atom platinum catalyst for the hydrogen evolution reaction: A new protocol by utilization of HxMoO3-x with plasmon resonance[J]. ChemCatChem, 2018, 10(5): 946-950.
doi: 10.1002/cctc.201701777 |
[24] |
PARK J, LEE S, KIM H E, et al. Investigation of the support effect in atomically dispersed Pt on WO3-x for utilization of Pt in the hydrogen evolution reaction[J]. Angewandte Chemie International Edition, 2019, 58(45): 16038-16042.
doi: 10.1002/anie.v58.45 |
[25] | ZHOU K L, WANG C, WANG Z, et al. Seamlessly conductive Co(OH)2 tailored atomically dispersed Pt electrocatalyst with a hierarchical nanostructure for an efficient hydrogen evolution reaction[J]. Energy & Environmental Science, 2020, 13(9): 3082-3092. |
[26] | DENG J, LI H, XIAO J, et al. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping[J]. Energy & Environmental Science, 2015, 8(5): 1594-1601. |
[27] | GUAN Y, FENG Y, WAN J, et al. Ganoderma-like MoS2/NiS2 with single platinum atoms doping as an efficient and stable hydrogen evolution reaction catalyst[J]. Small, 2018, 14(27): 1800697. |
[28] |
SHI Y, MA Z R, XIAO Y Y, et al. Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction[J]. Nature Communications, 2021, 12(1): 3021.
doi: 10.1038/s41467-021-23306-6 pmid: 34021141 |
[29] | 包丽霞, 孟凡超, 王海斌, 等. 基于金属-有机骨架材料衍生的多孔材料在电催化中的研究进展[J]. 化工科技, 2022, 30(5): 77-83. |
BAO Lixia, MENG Fanchao, WANG Haibin, et al. Progress in MOF precursor-derived non-precious metal-doped carbon materials in oxygen electrode electrocatalysis[J]. Science & Technology in Chemical Industry, 2022, 30(5): 77-83. | |
[30] |
GUO C, JIAO Y, ZHENG Y, et al. Intermediate modulation on noble metal hybridized to 2D metal-organic framework for accelerated water electrocatalysis[J]. Chem, 2019, 5(9): 2429-2441.
doi: 10.1016/j.chempr.2019.06.016 |
[1] | DOU Zhenlan, LI Jiawen, ZHANG Chunyan, CAI Zhenqi, YUAN Benfeng, JIA Kunqi, XIAO Guoping, WANG Jianqiang. Spatiotemporal distributed parameter modeling of solid oxide electrolysis cells [J]. Integrated Intelligent Energy, 2024, 46(7): 53-62. |
[2] | HAN Shiwang, ZHAO Ying, ZHANG Xingyu, XUAN Chengbo, ZHAO Tiantian, HOU Xukai, LIU Qianqian. Researches on hydrogen storage peak-shaving technology for new power systems to achieve carbon neutrality [J]. Integrated Intelligent Energy, 2022, 44(9): 20-26. |
[3] | Yating GUO, Tianyin DENG, Yanying LIU, Guangli HE. Research on the performance of membranes and anode materials in alkaline water electrolysis [J]. Integrated Intelligent Energy, 2022, 44(5): 64-68. |
[4] | Leijiao GE, Qingxue CUI, Mingwei LI, Fang YAO, Xiaona YANG, Tianshuo DU. Review on water electrolysis for hydrogen production powered by fluctuating wind power and PV [J]. Integrated Intelligent Energy, 2022, 44(5): 1-14. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||