Integrated Intelligent Energy ›› 2022, Vol. 44 ›› Issue (9): 20-26.doi: 10.3969/j.issn.2097-0706.2022.09.003
• Integrated Energy System • Previous Articles Next Articles
HAN Shiwang1(), ZHAO Ying2, ZHANG Xingyu1,*(
), XUAN Chengbo1, ZHAO Tiantian1, HOU Xukai1, LIU Qianqian1
Received:
2022-05-23
Revised:
2022-08-10
Published:
2022-09-25
Contact:
ZHANG Xingyu
E-mail:hsw550012621@163.com;xyzh@qlu.edu.cn
CLC Number:
HAN Shiwang, ZHAO Ying, ZHANG Xingyu, XUAN Chengbo, ZHAO Tiantian, HOU Xukai, LIU Qianqian. Researches on hydrogen storage peak-shaving technology for new power systems to achieve carbon neutrality[J]. Integrated Intelligent Energy, 2022, 44(9): 20-26.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2022.09.003
[1] | 喻小宝, 郑丹丹, 杨康, 等. “双碳”目标下能源电力行业的机遇与挑战[J]. 华电技术, 2021, 43(6):21-32. |
YU Xiaobao, ZHENG Dandan, YANG Kang, et al. Opportunities and challenges faced by energy and power industry with the goal of carbon neutrality and carbon peak[J]. Huadian Technology, 2021, 43(6):21-32. | |
[2] | 谷峻战. 英国可再生能源产业发展现状[J]. 全球科技经济瞭望, 2010, 25(4):18-23. |
GU Junzhan. Development status of UK renewable energy industry[J]. Global Technological Economy Outlook, 2010, 25(4):18-23. | |
[3] | 李娜, 李志远, 王楠, 等. 氢储能调峰站发展路径探索研究[J]. 中国能源, 2021, 43(1):55-59. |
LI Na, LI Zhiyuan, WANG Nan, et al. Research on the development path of hydrogen energy storage peak shaving stations[J]. China Energy, 2021, 43(1):55-59. | |
[4] | 王杭婧, 孙国正, 周颖. “双碳”目标下零碳氢储能市场推广研究——以安徽六安兆瓦级氢能源储能电站为例[J]. 商业经济, 2022(3):110-112. |
WANG Hangjing, SUN Guozheng, ZHOU Ying. Research on the marketing promotion of zero-carbon hydrogen energy storage under the "double-carbon" goal:A case study of lu'an mw hydrogen energy storage power station in anhui[J]. Business Economics, 2022(3):110-112. | |
[5] | 张佳兴. 国家发改委:统筹谋划氢能全产业链发展[J]. 中国设备工程, 2022(8):1. |
ZHANG Jiaxing. National development and reform commission:Overall planning for the development of the entire hydrogen energy industry chain[J]. China Equipment Engineering, 2022(8):1. | |
[6] | 陆娅楠. 推进氢能产业健康有序可持续发展[N]. 人民日报,2022-03-24(11). |
[7] | 舟丹. 能源转型过程中的关键因素[J]. 中外能源, 2022, 27(4):82. |
ZHOU Dan. Key factors in the process of energy transformation[J]. China and Foreign Energy, 2022, 27(4):82. | |
[8] |
PATIL A, LAUMANS L, VRIJENHOEF H. Solar to ammonia—Via proton's nfuel units[J]. Procedia Engineering, 2014, 83:322-327.
doi: 10.1016/j.proeng.2014.09.023 |
[9] |
JALALKAMALI N, ABBAS M Y. Sustainable aspects of electricity consumption in Klang valley[J]. Procedia-Social and Behavioral Sciences, 2014, 153:395-401.
doi: 10.1016/j.sbspro.2014.10.072 |
[10] | 赵学良. 发展谷电制氢提高可再生能源部署能力的探讨[J]. 石油炼制与化工, 2021, 52(6):117-120. |
ZHAO Xueliang. Discussion on developing hydrogen production from valley electricity to improve the deployment capability of renewable energy[J]. Petroleum Refining and Chemical Industry, 2021, 52(6):117-120. | |
[11] |
CHEN Z, WEI W, SONG L, et al. Hybrid water electrolysis:A new sustainable avenue for energy-saving hydrogen production[J]. Sustainable Horizons, 2022, 1:100002.
doi: 10.1016/j.horiz.2021.100002 |
[12] | 罗承先. 世界可再生能源电力制氢现状[J]. 中外能源, 2017, 22(8):25-32. |
LUO Chengxian. Status quo of hydrogen production from renewable energy electric power in the world[J]. China and Foreign Energy, 2017, 22(8):25-32. | |
[13] |
王红霞, 徐婉怡, 张早校. 可再生电力电解制绿色氢能的发展现状与建议[J/OL]. 化工进展:1-19[2022-08-19].DOI: 10.16085/j.issn.1000-6613.2022-0159.
doi: 10.16085/j.issn.1000-6613.2022-0159 |
WANG Hongxia, XU Wanyi, ZHANG Zaoxiao. Development status and suggestions of renewable electricity electrolysis to produce green hydrogen energy[J/OL]. Progress in Chemical Industry:1-19[2022-05-19].DOI: 10.16085/j.issn.1000-6613.2022-0159.
doi: 10.16085/j.issn.1000-6613.2022-0159 |
|
[14] |
葛磊蛟, 崔庆雪, 李明玮, 等. 风光波动性电源电解水制氢技术综述[J]. 综合智慧能源, 2022, 44(5):1-14.
doi: 10.3969/j.issn.2097-0706.2022.05.001 |
GE Leijiao, CUI Qingxue, LI Mingwei et al. Review on water electrolysis for hydrogen production powered by fluctuating wind power and PV[J]. Integrated Intelligent Energy, 2022, 44(5):1-14.
doi: 10.3969/j.issn.2097-0706.2022.05.001 |
|
[15] |
姚芳, 杨晓娜, 葛磊蛟, 等. 风-光-氢能源系统容量优化配置研究[J]. 综合智慧能源, 2022, 44(5):56-63.
doi: 10.3969/j.issn.2097-0706.2022.05.006 |
YAO Fang, YANG Xiaona, GE Leijiao, et al. Optimization of capacity allocation scheme for wind-solar-hydrogen energy system[J]. Integrated Intelligent Energy, 2022, 44(5):56-63.
doi: 10.3969/j.issn.2097-0706.2022.05.006 |
|
[16] | 李子烨, 劳力云, 王谦. 制氢技术发展现状及新技术的应用进展[J]. 现代化工, 2021, 41(7):86-89. |
LI Ziye, LAO Liyun, WANG Qian. Development status of hydrogen production technology and application progress of new technologies[J]. Modern Chemical Industry, 2021, 41(7):86-89. | |
[17] |
GONG Y, YAO J, WANG P, et al. Perspective of hydrogen energy and recent progress in electrocatalytic water splitting[J]. Chinese Journal of Chemical Engineering, 2022, 43:282-296.
doi: 10.1016/j.cjche.2022.02.010 |
[18] | 丛琳, 王楠, 李志远, 等. 电解水制氢储能技术现状与展望[J]. 电器与能效管理技术, 2021(7):1-7. |
CONG Lin, WANG Nan, LI Zhiyuan, et al. Status and prospect of hydrogen energy storage technology for electrolysis of water[J]. Electrical Appliances and Energy Efficiency Management Technology, 2021(7):1-7. | |
[19] | 郭育菁, 慕秀松, 周俊波, 等. 中小型工业化碱性水溶液制氢电解槽设计[J]. 化学工程, 2020, 48(9):70-73. |
GUO Yujing, MU Xiusong, ZHOU Junbo, et al. Design of small and medium-sized industrialized alkaline aqueous solution hydrogen production electrolyzer[J]. Chemical Engineering, 2020, 48(9):70-73. | |
[20] |
PAYMOONI K, DOROODCHI E, MOTUZAS J, et al. Feasibility study of LSCF5582 membrane integration into a nitrogen based chemical looping air separation process[J]. Chemical Engineering Research and Design, 2017, 125:96-107.
doi: 10.1016/j.cherd.2017.07.008 |
[21] | 苏承国. 大规模清洁能源接入下电网调峰问题研究[D]. 大连: 大连理工大学, 2019. |
[22] |
TARHAN C, ÇIL M A. A study on hydrogen,the clean energy of the future:Hydrogen storage methods[J]. Journal of Energy Storage, 2021, 40:102676.
doi: 10.1016/j.est.2021.102676 |
[23] |
PALYS M J, DAOUTIDIS P. Using hydrogen and ammonia for renewable energy storage:A geographically comprehensive techno-economic study[J]. Computers & Chemical Engineering, 2020, 136:106785.
doi: 10.1016/j.compchemeng.2020.106785 |
[24] | 于忠军. 电化学合成氨催化剂界面结构和催化特性调控研究[D]. 大庆: 东北石油大学, 2020. |
[25] | 于丽平. 电化学绿色合成氨技术的探索与研究[D]. 济南: 山东师范大学, 2021. |
[26] |
SKÚLASON E, BLIGAARD T, GUDMUNDSDÓTTIR S, et al. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction[J]. Physical Chemistry Chemical Physics, 2012, 14(3):1235-1245.
doi: 10.1039/C1CP22271F |
[27] | 姚佳欣. 高效氮气/硝酸盐电还原合成氨催化材料的制备与性能研究[D]. 长春: 吉林大学, 2021. |
[28] |
MAKHLOUFI C, KEZIBRI N. Large-scale decomposition of green ammonia for pure hydrogen production[J]. International Journal of Hydrogen Energy, 2021, 46(70):34777-34787.
doi: 10.1016/j.ijhydene.2021.07.188 |
[29] |
LI G, ZHANG H, YU X, et al. Highly efficient Co/NC catalyst derived from ZIF-67 for hydrogen generation through ammonia decomposition[J]. International Journal of Hydrogen Energy, 2022, 47(26):12882-12892.
doi: 10.1016/j.ijhydene.2022.02.046 |
[30] | 修凯. 阳离子交换膜在水电解制氢中的应用研究[D]. 天津: 天津大学, 2008. |
[31] | 杨文良. 氨分解制氢装置的HAZOP分析[J]. 化工管理, 2021(21):66-67. |
YANG Wenliang. HAZOP analysis of ammonia decomposition hydrogen production plant[J]. Chemical Management, 2021(21):66-67. | |
[32] |
ELBAZ A M, WANG S, GUIBERTI T F, et al. Review on the recent advances on ammonia combustion from the fundamentals to the applications[J]. Fuel Communications, 2022, 10:100053.
doi: 10.1016/j.jfueco.2022.100053 |
[33] | 赵国涛, 钱国明, 王盛, 等. “双碳”目标下火电企业绿色低碳转型的对策分析[J]. 华电技术, 2021, 43(10):11-21. |
ZHAO Guotao, QIAN Guoming, WANG Sheng, et al. Analysis on solution for green and low-carbon transformation of thermal power enterprises to achieve carbon peak and carbon neutrality[J]. Huadian Technology, 2021, 43(10):11-21. | |
[34] | 胡剑全, 谢珊, 吴一纯, 等. 低碳氨发动机的研究[J]. 可再生能源, 2014, 32(10):1505-1509. |
HU Jianquan, XIE Shan, WU Yichun, et al. Research on low-carbon ammonia engine[J]. Renewable Energy, 2014, 32(10):1505-1509. | |
[35] | 郝学殷, 徐荣琦, 吕涵, 等. 氨燃料电池用于电力应急发电工作的前景探讨[J]. 电力科学与工程, 2020, 36(8):63-71. |
HAO Xueyin, XU Rongqi, LV Han, et al. Prospects of ammonia fuel cells for emergency power generation[J]. Electric Power Science and Engineering, 2020, 36(8):63-71. | |
[36] |
HERBINET O, BARTOCCI P, GRINBERG D. On the use of ammonia as a fuel—A perspective[J]. Fuel Communications, 2022, 11:100064.
doi: 10.1016/j.jfueco.2022.100064 |
[37] |
AFIF A, RADENAHMAD N, CHEOK Q, et al. Ammonia-fed fuel cells:A comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2016, 60:822-835.
doi: 10.1016/j.rser.2016.01.120 |
[38] |
NI M, LEUNG D, LEUNG M. Thermodynamic analysis of ammonia fed solid oxide fuel cells:Comparison between proton-conducting electrolyte and oxygen ion-conducting electrolyte[J]. Journal of Power Sources, 2008, 183(2):682-686.
doi: 10.1016/j.jpowsour.2008.05.022 |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[3] | WANG Zening, LI Wenzhong, LI Donghui, XU Taishan, YU Jun. Construction of the hierarchical autonomous power balance model for software-defined new power systems [J]. Integrated Intelligent Energy, 2024, 46(7): 1-11. |
[4] | HE Fangbo, PEI Ligeng, ZHENG Rui, FAN Kangjian, ZHANG Xiaoman, LI Gengfeng. Construction of new power system in Shaanxi Province with the collaboration of source-network-load-storage [J]. Integrated Intelligent Energy, 2024, 46(7): 40-46. |
[5] | YANG Lei, WANG Rui, MA Lili, SUN Ning, LI Xuelian, CHEN Ting, WANG Shaorong, SHI Caixia. Research on Ca and Fe co-doped PrBaCo2O5+δ as a cathode material of solid oxide fuel cells [J]. Integrated Intelligent Energy, 2024, 46(7): 47-52. |
[6] | DOU Zhenlan, LI Jiawen, ZHANG Chunyan, CAI Zhenqi, YUAN Benfeng, JIA Kunqi, XIAO Guoping, WANG Jianqiang. Spatiotemporal distributed parameter modeling of solid oxide electrolysis cells [J]. Integrated Intelligent Energy, 2024, 46(7): 53-62. |
[7] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
[8] | ZHENG Qingming, JING Yanwei, LIANG Tao, CHAI Lulu, LYU Liangnian. Optimized scheduling on large-scale hydrogen production system for off-grid renewable energy based on DDPG algorithm [J]. Integrated Intelligent Energy, 2024, 46(6): 35-43. |
[9] | YU Haibin, LU Wenzhou, TANG Liang, ZHANG Yuchen, ZOU Xiangyu, JIANG Yuliang, LIU Jiabao. Economic dispatch and profit distribution strategy for multi-agent virtual power plants considering risk preferences [J]. Integrated Intelligent Energy, 2024, 46(6): 66-77. |
[10] | WANG Liang, DENG Song. Anomalous data detection methods for new power systems [J]. Integrated Intelligent Energy, 2024, 46(5): 12-19. |
[11] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
[12] | MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer [J]. Integrated Intelligent Energy, 2024, 46(4): 60-67. |
[13] | WANG Yongli, WANG Yanan, MA Ziben, QIN Yumeng, CHEN Xichang, TENG Yue. Effectiveness evaluation on energy trading systems taking blockchain technology [J]. Integrated Intelligent Energy, 2024, 46(4): 78-84. |
[14] | DING Leyan, KE Song, YANG Jun, SHI Xingye. Control strategy of virtual synchronous generators based on adaptive control parameter setting [J]. Integrated Intelligent Energy, 2024, 46(3): 35-44. |
[15] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||