Integrated Intelligent Energy ›› 2022, Vol. 44 ›› Issue (5): 1-14.doi: 10.3969/j.issn.2097-0706.2022.05.001
• Summary on Viewpoints • Previous Articles Next Articles
Leijiao GE1(), Qingxue CUI1(
), Mingwei LI2, Fang YAO2, Xiaona YANG2, Tianshuo DU1(
)
Received:
2021-12-26
Revised:
2022-03-15
Published:
2022-05-25
CLC Number:
Leijiao GE, Qingxue CUI, Mingwei LI, Fang YAO, Xiaona YANG, Tianshuo DU. Review on water electrolysis for hydrogen production powered by fluctuating wind power and PV[J]. Integrated Intelligent Energy, 2022, 44(5): 1-14.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2022.05.001
[1] |
KAKOULAKI G, KOUGIAS I, TAYLOR N, et al. Green hydrogen in Europe-A regional assessment: Substituting existing production with electrolysis powered by renewables[J]. Energy Conversion and Management, 2020, 228:113649.
doi: 10.1016/j.enconman.2020.113649 |
[2] |
GÖTZ M, LEFEBVRE J, MÖRS F, et al. Renewable Power-to-gas: A technological and economic review[J]. Renewable Energy, 2016, 85: 1371-1390.
doi: 10.1016/j.renene.2015.07.066 |
[3] | 迟军, 俞红梅. 基于可再生能源的水电解制氢技术(英文)[J]. 催化学报, 2018, 39(3): 390-394. |
CHI Jun, YU Hongmei. Water electrolysis based on renewable energy for hydrogen production[J]. Chinese Journal of Catalysis, 2018, 39(3): 390-394.
doi: 10.1016/S1872-2067(17)62949-8 |
|
[4] |
ACAR C, DINCER I. Comparative assessment of hydrogen production methods from renewable and non-renewable sources[J]. International Journal of Hydrogen Energy, 2014, 39(1): 1-12.
doi: 10.1016/j.ijhydene.2013.10.060 |
[5] |
CHEN Q, LV M, GU Y, et al. Hybrid energy system for a coal-based chemical industry[J]. Joule, 2018, 2(4):607-620.
doi: 10.1016/j.joule.2018.02.015 |
[6] | 王靖, 蒋迎花, 康丽霞, 等. 可再生能源制氢与波动氢气负荷耦合系统的调控策略[J]. 高校化学工程学报, 2021, 35(2): 336-347. |
WANG Jing, JIANG Yinghua, KANG Lixia, et al. Regulating strategies for coupling systems to match hydrogen production using renewable energy with fluctuating hydrogen demands[J]. Journal of Chemical Engineering of Chinese Universities, 2021, 35(2):336-347. | |
[7] | 蔡国伟, 陈冲, 孔令国, 等. 风电/光伏/制氢/超级电容器并网系统建模与控制[J]. 电网技术, 2016, 40(10):2982-2990. |
CAI Guowei, CHEN Chong, KONG Lingguo, et al. Modeling and control of grid-connected system of wind/PV/electrolyzer and SC[J]. Power System Technology, 2016, 40(10):2982-2990. | |
[8] |
FANG Ruiming, LIANG Yin. Control strategy of electrolyzer in a wind-hydrogen system considering the constraints of switching times[J]. International Journal of Hydrogen Energy, 2019, 44(46): 25104-25111.
doi: 10.1016/j.ijhydene.2019.03.033 |
[9] | HOSSAIN M M, SHEIKH M, MD P K. Cooperatively controlling of grid connected DFIG based wind turbine with hydrogen generation system[C]// International Conference on Electrical & Electronic Engineering. IEEE, 2016. |
[10] | 黄大为, 齐德卿, 于娜, 等. 利用制氢系统消纳风电弃风的制氢容量配置方法[J]. 太阳能学报, 2017, 38(6): 1517-1525. |
HUANG Dawei, QI Deqing, YU Na, et al. Capacity allocation method of hydrogen production system consuming abandoned wind power[J]. Acta Energiae Solaris Sinica, 2017, 38(6): 1517-1525. | |
[11] |
DINH V N, LEAHY P, MCKEOGH E, et al. Development of a viability assessment model for hydrogen production from dedicated offshore wind farms[J]. International Journal of Hydrogen Energy, 2021, 46(48):24620-24631.
doi: 10.1016/j.ijhydene.2020.04.232 |
[12] | HUANG C J, ZONG Y, YOU S, et al. Cooperative control of wind-hydrogen-SMES hybrid systems for fault-ride-through improvement and power smoothing[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(8):3103729. |
[13] |
KHAN M J, IQBAL M T. Analysis of a small wind-hydrogen stand-alone hybrid energy system[J]. Applied Energy, 2009, 86(11): 2429-2442.
doi: 10.1016/j.apenergy.2008.10.024 |
[14] |
DIXON C, REYNOLDS S, RODLEY D, et al. Micro/small wind turbine power control for electrolysis applications[J]. Renewable Energy, 2016, 87:182-192.
doi: 10.1016/j.renene.2015.09.055 |
[15] | 陈宏善, 魏花花. 利用太阳能制氢的方法及发展现状[J]. 材料导报, 2015, 29(11): 36-40. |
CHEN Hongshan, WEI Huahua. The methods and development status for hydrogen production from water-splitting using solar energy[J]. Materials Review, 2015, 29(11): 36-40. | |
[16] | 张娜, 葛磊蛟. 基于SOA优化的光伏短期出力区间组合预测[J]. 太阳能学报, 2021, 42(5): 252-259. |
ZHANG Na, GE Leijiao. Photovoltaic system short-term power interval hybrid forecasting method based on seeker optimization algorithm[J]. Acta Energiae Solaris Sinica, 2021, 42(5): 252-259. | |
[17] |
DAHBI S, ABOUTNI R, AZIZ A, et al. Optimised hydrogen production by a photovoltaic-electrolysis system DC/DC converter and water flow controller[J]. International Journal of Hydrogen Energy, 2016, 41(45): 20858-20866.
doi: 10.1016/j.ijhydene.2016.05.111 |
[18] |
ŞAHIN M E, OKUMUŞ H I, AYDEMIR M T. Implementation of an electrolysis system with DC/DC synchronous buck converter[J]. International Journal of Hydrogen Energy, 2014, 39(13):6802-6812.
doi: 10.1016/j.ijhydene.2014.02.084 |
[19] | ŞAHIN M E, OKUMUŞ H I. Fuzzy logic controlled parallel connected synchronous buck DC-DC converter for water electrolysis[J]. IEEE Journal of Research, 2013, 59(3): 280-288. |
[20] |
GARRIGÓS A, LIZÁN J L, BLANES J M, et al. Combined maximum power point tracking and output current control for a photovoltaic-electrolyser DC/DC converter[J]. International Journal of Hydrogen Energy, 2014, 39(36): 20907-20919.
doi: 10.1016/j.ijhydene.2014.10.041 |
[21] | DIMROTH F.Photovoltaic hydrogen generation process and device:WO2006042650A3[P]. 2006-12-28. |
[22] |
RAU S, VIERRATH S, OHLMANN J, et al. Highly efficient solar hydrogen generation:An integrated concept joining Ⅲ-V solar cells with PEM electrolysis cells[J]. Energy Technology, 2014, 2 (1), 43-53.
doi: 10.1002/ente.201300116 |
[23] |
FALLISCH A, SCHELLHASE L, FRESKO J, et al. Hydrogen concentrator demonstrator module with 19.8% solar-to-hydrogen conversion efficiency according to the higher heating value[J]. International Journal of Hydrogen Energy, 2017, 42(43): 26804-26815.
doi: 10.1016/j.ijhydene.2017.07.069 |
[24] |
FERRERO D, SANTARELLI M. Investigation of a novel concept for hydrogen production by PEM water electrolysis integrated with multi-junction solar cells[J]. Energy Conversion and Management, 2017, 148: 16-29.
doi: 10.1016/j.enconman.2017.05.059 |
[25] | WANG H S, KONG H, PU Z G, et al. Feasibility of high efficient solar hydrogen generation system integrating photovoltaic cell/photon-enhanced thermionic emission and high-temperature electrolysis cell[J]. Energy Conversion & Management, 2020, 210(4): 112699. |
[26] |
KALEIBARI S, YANPING Z, ABANADES S. Solar-drive high temperature hydrogen production via integrated spectrally split concentrated photovoltaics (SSCPV) and solar power tower[J]. International Journal of Hydrogen Energy, 2019, 44(5): 2519-2532.
doi: 10.1016/j.ijhydene.2018.12.039 |
[27] |
RABADY R I. Solar spectrum management for effective hydrogen production by hybrid thermo-photovoltaic water electrolysis[J]. International Journal of Hydrogen Energy, 2014, 39(13): 6827-6836.
doi: 10.1016/j.ijhydene.2014.02.074 |
[28] |
SARGUNANATHAN S, ELANGO A, MOHIDEEN S T. Performance enhancement of solar photovoltaic cells using effective cooling methods: A review[J]. Renewable and Sustainable Energy Reviews, 2016, 64:382-393.
doi: 10.1016/j.rser.2016.06.024 |
[29] |
SHI X F, QIAN Y, YANG S Y. Fluctuation analysis of a complementary wind-solar energy system and integration for large scale hydrogen production[J]. ACS Sustainable Chemistry and Engineering, 2020, 8(18): 7097-7110.
doi: 10.1021/acssuschemeng.0c01054 |
[30] | 侯慧, 刘鹏, 黄亮, 等. 考虑不确定性的电-热-氢综合能源系统规划[J]. 电工技术学报, 2021, 36(S1):133-144. |
HOU Hui, LIU Peng, HUANG Liang, et al. Planning of electricity-heat-hydrogen integrated energy system considering uncertainties[J]. Transactions of China Electrotechnical Society, 2021, 36(S1): 133-144. | |
[31] | 张坤, 吴建东, 毛承雄, 等. 基于模糊算法的风电储能系统的优化控制[J]. 电工技术学报, 2012, 27(10): 235-241. |
ZHANG Kun, WU Jiandong, MAO Chengxiong, et al. Optimal control of energy storage system for wind power generation based on fuzzy algorithm[J]. Transactions of China Electrotechnical Society, 2012, 27(10): 235-241. | |
[32] | 秦羽飞, 葛磊蛟, 王波. 能源互联网群体智能协同控制与优化技术[J]. 华电技术, 2021, 43(9):1-13. |
QIN Yufei, GE Leijiao, WANG Bo. Swarm intelligence collaborative control and optimization technology of Energy Internet[J]. Huadian Technology, 2021, 43(9):1-13. | |
[33] | 赵国涛, 钱国明, 丁泉, 等. 基于区块链的可再生能源消纳激励机制研究[J]. 华电技术, 2021, 43(4): 71-77. |
ZHAO Guotao, QIAN Guoming, DING Quan, et al. Study on incentive mechanism of renewable energy consumption based on blockchain[J]. Huadian Technology, 2021, 43(4): 71-77. | |
[34] | 喻小宝, 郑丹丹, 杨康, 等. “双碳”目标下能源电力行业的机遇与挑战[J]. 华电技术, 2021, 43(6): 21-32. |
YU Xiaobao, ZHENG Dandan, YANG Kang, et al. Opportunities and challenges faced by energy and power industry with the goal of carbon neutrality and carbon peak[J]. Huadian Technology, 2021, 43(6): 21-32. | |
[35] |
CLARKE R E, GIDDEY S, CIACCHI F T, et al. Direct coupling of an electrolyser to a solar PV system for generating hydrogen[J]. International Journal of Hydrogen Energy, 2009, 34(6): 2531-2542.
doi: 10.1016/j.ijhydene.2009.01.053 |
[36] |
DAVID M, OCAMPO-MARTINEZ C, SANCHEZ-PENA R. Advances in alkaline water electrolyzers: A review[J]. Journal of Energy Storage, 2019, 23(6): 392-403.
doi: 10.1016/j.est.2019.03.001 |
[37] |
OGUMEREM G S, PISTIKOPOULOS E N. Parametric optimization and control for a smart Proton Exchange Membrane Water Electrolysis(PEMWE) system[J]. Journal of Process Control, 2020, 91:37-49.
doi: 10.1016/j.jprocont.2020.05.002 |
[38] |
KAMLUNGSUA K, SU P C, CHAN S H. Hydrogen generation using solid oxide electrolysis cells[J]. Fuel Cells, 2020, 20(6):644-649.
doi: 10.1002/fuce.202070602 |
[39] | SAPOUNTZI F M, GRACIA J M, WESTSTRATE C J, et al. Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas[J]. Progress in Energy & Combustion Science, 2017, 58:1-35. |
[40] | 刘明义, 于波, 徐景明. 固体氧化物电解水制氢系统效率[J]. 清华大学学报(自然科学版), 2009, 49(6):868-871. |
LIU Mingyi, YU Bo, XU Jingming, et al. Efficiency of solid oxide water electrolysis system for hydrogen production[J]. Journal of Tsinghua University(Science and Technology), 2009, 49(6): 868-871. | |
[41] | 王正一. 兼顾弃风率与经济性的风电制氢容量规划研究[D]. 大连: 大连理工大学, 2021. |
[42] |
ESCOBAR-YONOFF R, MAESTRE-CAMBRO D, CHARRY S, et al. Performance assessment and economic perspectives of integrated PEM fuel cell and PEM electrolyzer for electric power generation[J]. Heliyon, 2021, 7(3):e06506.
doi: 10.1016/j.heliyon.2021.e06506 |
[43] |
DANESHPOUR R, MEHRPOOYA M. Design and optimization of a combined solar thermophotovoltaic power generation and solid oxide electrolyser for hydrogen production[J]. Energy Conversion and Management, 2018, 176:274-286.
doi: 10.1016/j.enconman.2018.09.033 |
[44] |
PATCHARAVORACHOT Y, THONGDEE S, SAEBEA D, et al. Performance comparison of solid oxide steam electrolysis cells with/without the addition of methane[J]. Energy Conversion and Management, 2016, 120: 274-286.
doi: 10.1016/j.enconman.2016.04.100 |
[45] |
CHEN C, XIA Q, FENG S, et al. A novel solar hydrogen production system integrating high temperature electrolysis with ammonia based thermochemical energy storage[J]. Energy Conversion and Management, 2021, 237:114143.
doi: 10.1016/j.enconman.2021.114143 |
[46] | DU X, LIU W, ZHANG Z, et al. Low-energy catalytic electrolysis for simultaneous hydrogen evolution and lignin depolymerization[J]. Journal of Materials Chemistry A: Energy and Sustainability, 2017, 10(5):847-854. |
[47] |
KIM J, JUN A, GWON O, et al. Hybrid-solid oxide electrolysis cell:A new strategy for efficient hydrogen production[J]. Nano Energy, 2018, 44:121-126.
doi: 10.1016/j.nanoen.2017.11.074 |
[48] |
SCHEFOLD J, BRISSE A, POEPKE H. Long-term steam electrolysis with electrolyte-supported solid oxide cells[J]. Electrochimica Acta, 2015, 179:161-168.
doi: 10.1016/j.electacta.2015.04.141 |
[49] |
LIU C Y, HU L H, SUNG C C. Micro-protective layer for lifetime extension of solid polymer electrolyte water electrolysis[J]. Journal of Power Sources, 2012, 207:81-85.
doi: 10.1016/j.jpowsour.2012.01.045 |
[50] | LI A, OOKA H, BONNET N, et al. Stable potential windows for long-term electrocatalysis by manganese oxides under acidic conditions[J]. Angewandte Chemie, 2019, 58(15): 5054-5058. |
[51] | 孟源, 樊小朝, 史瑞静, 等. 基于机会约束及N-1安全约束的风光联合储能系统选址定容优化[J]. 电网技术, 2021, 45(5): 1886-1893. |
MENG Yuan, FAN Xiaozhao, SHI Ruijing, et al. Optimization of location and capacity for wind-solar-energy storage combined system based on chance constraints and N-1 security constraints[J]. Power System Technology, 2021, 45(5): 1886-1893. | |
[52] | 李亮, 唐巍, 白牧可, 等. 考虑时序特性的多目标分布式电源选址定容规划[J]. 电力系统自动化, 2013, 37(3): 58-63,128. |
LI Liang, TANG Wei, BAI Muke, et al. Multi-objective locating and sizing of distributed generators based on time-sequence characteristics[J]. Automation of Electric Power Systems, 2013, 37(3): 58-63,128. | |
[53] | 王广玲. 微网风光储容量优化配置[D]. 北京: 北方工业大学, 2021. |
[54] | 乔延辉, 韩爽, 许彦平, 等. 基于天气分型的风光出力互补性分析方法[J]. 电力系统自动化, 2021, 45(2):82-88. |
QIAO Yanhui, HAN Shuang, XU Yanping, et al. Analysis method for complementarity between wind and photovoltaic power outputs based on weather classification[J]. Automation of Electric Power Systems, 2021, 45(2):82-88. | |
[55] | 王芃, 刘伟佳, 林振智, 等. 基于场景分析的风电场与电转气厂站协同选址规划[J]. 电力系统自动化, 2017, 41(6): 20-28. |
WANG Peng, LIU Weijia, LIN Zhenzhi, et al. Scenario analysis based collaborative site selection planning of wind farms and power-to-gas plants[J]. Automation of Electric Power Systems, 2017, 41(6): 20-28. | |
[56] |
VALENCIAGA F, EVANGELISTA C A. Control design for an autonomous wind based hydrogen production system[J]. International Journal of Hydrogen Energy, 2010, 35(11): 5799-5807.
doi: 10.1016/j.ijhydene.2010.02.096 |
[57] | 沈小军, 聂聪颖, 吕洪. 计及电热特性的离网型风电制氢碱性电解槽阵列优化控制策略[J]. 电工技术学报, 2021, 36(3): 463-472. |
SHEN Xiaojun, NIE Congying, LYU Hong. Optimal control strategy of off-grid hydrogen production alkaline electrolyzer array considering electrothermal characteristics[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 463-472. | |
[58] | HUANG J, XIE Y, YAN L, et al. Decoupled amphoteric water electrolysis and its integration with Mn-Zn battery for flexible utilization of renewables[J]. Energy & Environmental Science, 2021, 14(2):883-889. |
[59] |
ONDA K, KYAKUNO T, HATTORI K, et al. Prediction of production power for high-pressure hydrogen by high-pressure water electrolysis[J]. Journal of Power Sources, 2004, 132(1/2): 64-70.
doi: 10.1016/j.jpowsour.2004.01.046 |
[60] | KOH J H, YOON D J, CHANG H O H. Simple electrolyzer model development for high-temperature electrolysis system analysis using solid oxide electrolysis cell[J]. Journal of Nuclear Science & Technology, 2010, 47(7): 599-607. |
[61] |
LIN M Y, HOURNG L W, KUO C W. The effect of magnetic force on hydrogen production efficiency in water electrolysis[J]. International Journal of Hydrogen Energy, 2012, 37(2): 1311-1320.
doi: 10.1016/j.ijhydene.2011.10.024 |
[62] |
JANG D, CHO H S, KANG S. Numerical modeling and analysis of the effect of pressure on the performance of an alkaline water electrolysis system[J]. Applied Energy, 2021, 287(1): 116554.
doi: 10.1016/j.apenergy.2021.116554 |
[63] |
KOBAYASHI Y, KOSAKA K, YAMAMOTO T, et al. A solid polymer water electrolysis system utilizing natural circulation[J]. International Journal of Hydrogen Energy, 2014, 39(29): 16263-16274.
doi: 10.1016/j.ijhydene.2014.07.153 |
[64] |
ESMAILI P, DINCER I, NATERER G F. Energy and exergy analyses of electrolytic hydrogen production with molybdenum-oxo catalysts[J]. International Journal of Hydrogen Energy, 2012, 37(9): 7365-7372.
doi: 10.1016/j.ijhydene.2012.01.076 |
[65] |
MA Y, DONG X L, WANG Y, et al. Decoupling hydrogen and oxygen production in acidic water electrolysis using a polytriphenylamine-based battery electrode[J]. Angewandte Chemie International Edition, 2018, 57(11): 2904-2908.
doi: 10.1002/anie.201800436 |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[3] | DOU Zhenlan, LI Jiawen, ZHANG Chunyan, CAI Zhenqi, YUAN Benfeng, JIA Kunqi, XIAO Guoping, WANG Jianqiang. Spatiotemporal distributed parameter modeling of solid oxide electrolysis cells [J]. Integrated Intelligent Energy, 2024, 46(7): 53-62. |
[4] | WANG Jun, TIAN Hao, ZHAO Ergang, SHU Zhan, WAN Zijing. Low-carbon operation control on park-level integrated energy systems considering shared energy storage devices for electric vehicles [J]. Integrated Intelligent Energy, 2024, 46(6): 16-26. |
[5] | GONG Gangjun, WANG Luyao, CHANG Zhuoyue, LIU Xu, XING Huidi. Security protection for integrated energy cyber physical systems based on energy hubs [J]. Integrated Intelligent Energy, 2024, 46(5): 65-72. |
[6] | LI Yun, ZHOU Shijie, HU Zheqian, LIANG Junyuan, XIAO Leiming. Optimal scheduling of integrated energy systems based on NSGA-Ⅱ-WPA [J]. Integrated Intelligent Energy, 2024, 46(4): 1-9. |
[7] | SHI Mingming, ZHU Rui, LIU Ruihuang. Joint economic dispatch of an AC/DC power system and a heating system [J]. Integrated Intelligent Energy, 2024, 46(4): 10-16. |
[8] | CHEN Yong, XIAO Leiming, WANG Jingnan, WU Jian. Capacity planning method with high reliability for integrated energy systems with low-carbon emissions based on scenario expansion [J]. Integrated Intelligent Energy, 2024, 46(4): 24-33. |
[9] | WANG Jinglong, WANG Hui, YANG Ye, ZHENG Yingying. Collaborative optimization method for power-heat-gas integrated energy systems considering multiple uncertainties [J]. Integrated Intelligent Energy, 2024, 46(4): 42-51. |
[10] | ZHONG Yongjie, WANG Zidong, ZUO Jianxun, WANG Changqing, LI Jingxia, JI Ling. Economic dispatch of multi-energy complementary systems considering multi-period scales and regional stratification [J]. Integrated Intelligent Energy, 2024, 46(4): 52-59. |
[11] | XU Cong, HU Yongfeng, ZHANG Aiping, YOU Changfu. Multi-load day-ahead and intra-day forecasting for integrated energy systems based on feature screening [J]. Integrated Intelligent Energy, 2024, 46(3): 45-53. |
[12] | ZHOU Guanting, XU Kai, LIU Jianwei, LU Baixing, ZHANG Qiao, CHEN Xin. Path optimization of regional integrated energy service providers' trades based on graph theory [J]. Integrated Intelligent Energy, 2024, 46(2): 49-58. |
[13] | ZHANG Li, JIN Li, REN Juguang, LIU Xiaobing. Research on load regulation strategy of integrated energy systems considering meteorological factors and time-of-use tariffs [J]. Integrated Intelligent Energy, 2024, 46(1): 18-27. |
[14] | FANG Gang, WANG Jing, ZHANG Bobo, WANG Junzhe. Research on optimization algorithm of industrial park microgrid configuration based on Pareto solution set [J]. Integrated Intelligent Energy, 2024, 46(1): 49-55. |
[15] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||