Integrated Intelligent Energy ›› 2022, Vol. 44 ›› Issue (5): 15-29.doi: 10.3969/j.issn.2097-0706.2022.05.002
• Summary on Viewpoints • Previous Articles Next Articles
Yimin ZHANG(), Jianli KANG, Naiqin ZHAO
Received:
2022-03-02
Revised:
2022-04-29
Published:
2022-05-25
Contact:
Jianli KANG
E-mail:18810948061@163.com
CLC Number:
Yimin ZHANG, Jianli KANG, Naiqin ZHAO. Development and perspectives of the transition metal-based catalysts for water splitting[J]. Integrated Intelligent Energy, 2022, 44(5): 15-29.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2022.05.002
[1] | YOU B, TANG M T, TSAI C, et al. Enhancing electrocatalytic water splitting by strain engineering[J]. Advanced Materials, 2019, 31(17):1-28. |
[2] |
HUNTER M B, GRAY H B, MMULLER A, et al. Earth-abundant heterogeneous water oxidation catalysts[J]. Chemical Review, 2016, 116(22): 14120-14136.
doi: 10.1021/acs.chemrev.6b00398 |
[3] |
MEIER J C, GALEANO C, KATSOUNAROS I, et al. Degradation mechanisms of Pt/C fuel cell catalysts under simulated start-stop conditions[J]. Acs Catalysis, 2012, 2(5):832-843.
doi: 10.1021/cs300024h |
[4] |
BERGEN A, PITT L, ROWE A, et al. Transient electrolyser response in a renewable-regenerative energy system[J]. International Journal of Hydrogen Energy, 2009, 34(1):64-70.
doi: 10.1016/j.ijhydene.2008.10.007 |
[5] | WANG M, ZHANG L, HE Y, et al. Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting[J]. Journal of Materials Chemistry A, 2021 (9): 5320-5363. |
[6] |
COOK T R, DOGUTAN D K, REECE S Y, et al. Solar energy supply and storage for the legacy and non legacy worlds[J]. Chemical Reviews, 2010, 110(11):6474-6502.
doi: 10.1021/cr100246c |
[7] |
SHAN J, ZHENG Y, SHI B, et al. Regulating electrocatalysts via surface and interface engineering for acidic water electrooxidation[J]. ACS Energy Letters, 2019, 4(11): 2719-2730.
doi: 10.1021/acsenergylett.9b01758 |
[8] |
SONG J, WEI C, HUANG Z F, et al. A review on fundamentals for designing oxygen evolution electrocatalysts[J]. Chemical Society Reviews, 2020, 49(7): 2196-2214.
doi: 10.1039/C9CS00607A |
[9] |
BINNINGER T, MOHAMED R, WALTAR K, et al. Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts[J]. Scientific Reports, 2015, 5: 12167.
doi: 10.1038/srep12167 |
[10] |
GRIMAUD A, DLAZ-MORALES O, HAN B, et al. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution[J]. Nature Chemistry, 2017, 9(5): 457-465.
doi: 10.1038/nchem.2695 |
[11] |
ZHANG T, LIU X, XIN C, et al. Water splitting catalysts: Colloidal synthesis of Mo-Ni alloy nanoparticles as bifunctional electrocatalysts for efficient overall water splitting[J]. Advanced Materials Interfaces, 2018, 5(13):1870063.
doi: 10.1002/admi.201870063 |
[12] |
GAO M Y, YANG C, ZHANG Q B, et al. Facile electrochemical preparation of self-supported porous Ni-Mo alloy microsphere films as efficient bifunctional electrocatalysts for water splitting[J]. Journal of Materials Chemistry A, 2017, 5(12): 5797-5805.
doi: 10.1039/C6TA10812A |
[13] |
TIAN J, CHENG N, LIU Q, et al. Self-supported NiMo hollow nanorod array: An efficient 3D bifunctional catalytic electrode for overall water splitting[J]. Journal of Materials Chemistry A, 2015.DOI: 10.1039/C5TA04723D.
doi: 10.1039/C5TA04723D |
[14] |
FANG M, GAO W, DONG G, et al. Hierarchical NiMo-based 3D electrocatalysts for highly-efficient hydrogen evolution in alkaline conditions[J]. Nano Energy, 2016, 27:247-254.
doi: 10.1016/j.nanoen.2016.07.005 |
[15] | LUO Y, ZHANG Z, YANG F, et al. Stabilized hydroxide-mediated nickel-based electrocatalysts for high-current-density hydrogen evolution in alkaline media[J]. Energy & Environmental Science, 2021, 14:4610-4619. |
[16] |
SHI H, ZHOU Y T, YAO R Q, et al. Spontaneously separated intermetallic Co3Mo from nanoporous copper as versatile electrocatalysts for highly efficient water splitting[J]. Nature Communications, 2020, 11(1): 2940.
doi: 10.1038/s41467-020-16769-6 |
[17] |
ZHANG G, MING K, KANG J, et al. High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction[J]. Electrochimica Acta, 2018, 279: 19-23.
doi: 10.1016/j.electacta.2018.05.035 |
[18] |
LIU H, QIN H, KANG J, et al. A freestanding nanoporous NiCoFeMoMn high-entropy alloy as an efficient electrocatalyst for rapid water splitting[J]. Chemical Engineering Journal, 2022, 435:134898.
doi: 10.1016/j.cej.2022.134898 |
[19] |
CUI M, YANG C, LI B, et al. High‐entropy metal sulfide nanoparticles promise high‐performance oxygen evolution reaction[J]. Advanced Energy Materials, 2020, 11(3).DOI: 10.1002/aenm.202002887
doi: 10.1002/aenm.202002887 |
[20] |
QIAO H, WANG X, DONG Q, et al. A high-entropy phosphate catalyst for oxygen evolution reaction[J]. Nano Energy, 2021, 86. DOI: 10.1016/j.nanoen.2021.106029.
doi: 10.1016/j.nanoen.2021.106029 |
[21] |
QIU H J, FANG G, WEN Y, et al. Nanoporous high-entropy alloys for highly stable and efficient catalysts[J]. Journal of Materials Chemistry A, 2019, 7(11): 6499-6506.
doi: 10.1039/C9TA00505F |
[22] |
JIN Z, LYU J, JIA H, et al. Nanoporous Al-Ni-Co-Ir-Mo high-entropy alloy for record-high water splitting activity in acidic environments[J]. Small, 2019, 15(47). DOI: 10.1002/smll.201904180.
doi: 10.1002/smll.201904180 |
[23] |
LI S, WANG J, LIN X, et al. Flexible solid-state direct ethanol fuel cell catalyzed by nanoporous high-entropy Al-Pd-Ni-Cu-Mo anode and spinel(AlMnCo)3O4 cathode[J]. Advanced Functional Materials, 2020, 31(5).DOI: 10.1002/adfm.202007129.
doi: 10.1002/adfm.202007129 |
[24] |
LU Y, HUANG K, CAO X, et al. Atomically dispersed intrinsic hollow sites of M-M1-M(M1 = Pt, Ir;M= Fe, Co, Ni, Cu, Pt, Ir) on FeCoNiCuPtIr nanocrystals enabling rapid water redox[J]. Advanced Functional Materials, 2022, 32(19). DOI: 10.1002/adfm.202110645.
doi: 10.1002/adfm.202110645 |
[25] |
JIA Z, TAO Y, SUN L, et al. A novel multinary intermetallic as an active electrocatalyst for hydrogen evolution[J]. Advanced Materials, 2020, 32(21).DOI: 10.1002/adma.202000385.
doi: 10.1002/adma.202000385 |
[26] |
WANG B, XU L, LIU G, et al. Biomass willow catkin-derived Co3O4/N-doped hollow hierarchical porous carbon microtubes as an effective tri-functional electrocatalyst[J]. Journal of Materials Chemistry A, 2017, 5(38): 20170-20179.
doi: 10.1039/C7TA05002J |
[27] |
ZHANG P, LIU Y, LIANG T, et al. Nitrogen-doped carbon wrapped Co-Mo2C dual Mott-Schottky nanosheets with large porosity for efficient water electrolysis[J]. Applied Catalysis B: Environmental, 2021, 284.DOI: 10.1016/j.apcatb.2020.119738.
doi: 10.1016/j.apcatb.2020.119738 |
[28] |
YOU B, ZHANG Y, YIN P, et al. Universal molecular-confined synthesis of interconnected porous metal oxides-N-C frameworks for electrocatalytic water splitting[J]. Nano Energy, 2018, 48: 600-606.
doi: 10.1016/j.nanoen.2018.04.009 |
[29] | 马天增, 付铭凯, 任婷, 等. 基于金属氧化物的两步法太阳能热化学循环制备燃料研究现状与展望[J]. 华电技术, 2021, 43(11): 110-127. |
MA Tianzeng, FU Mingkai, REN Ting, et al. Review and prospects of two-step solar thermochemical cycle for preparing fuels based on metal oxides[J]. Huadian Technology, 2021, 43(11): 110-127. | |
[30] |
GAO X, ZHANG H, LI Q, et al. Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting[J]. Angew Chem Int Ed Engl, 2016, 55(21): 6290-6294.
doi: 10.1002/anie.201600525 |
[31] |
ZHU Y, ZHOU W, ZHONG Y, et al. A perovskite nanorod as bifunctional electrocatalyst for overall water splitting[J]. Advanced Energy Materials, 2017, 7(8).DOI: 10.1002/aenm.201602122.
doi: 10.1002/aenm.201602122 |
[32] |
HUA B, LI M, ZHANG Y Q, et al. All-in-one perovskite catalyst: Smart controls of architecture and composition toward enhanced oxygen/hydrogen evolution reactions[J]. Advanced Energy Materials, 2017, 7(20).DOI: 10.1002/aenm.201700666.
doi: 10.1002/aenm.201700666 |
[33] |
XU X, CHEN Y, ZHOU W, et al. A Perovskite electrocatalyst for efficient hydrogen evolution reaction[J]. Advanced Materials, 2016, 28(30): 6442-6448.
doi: 10.1002/adma.201600005 |
[34] |
ELAKKIYA R, RAMKUMAR R, MADURAIVEERAN G. Flower-like nickel-cobalt oxide nanomaterials as bi-functional catalyst for electrochemical water splitting[J]. Materials Research Bulletin, 2019, 116: 98-105.
doi: 10.1016/j.materresbull.2019.04.016 |
[35] |
CHEN W, QIAN G, XU Q, et al. Efficient bifunctional catalysts for overall water splitting: porous Fe-Mo oxide hybrid nanorods[J]. Nanoscale, 2020, 12(13): 7116-7123.
doi: 10.1039/D0NR00446D |
[36] |
VENTURINI J, BONATTO F, GUAGLIANONI W C, et al. Cobalt-doped titanium oxide nanotubes grown via one-step anodization for water splitting applications[J]. Applied Surface Science, 2019, 464: 351-359.
doi: 10.1016/j.apsusc.2018.09.093 |
[37] |
HAN H, WOO J, HONG Y R, et al. Polarized electronic configuration in transition metal-fluoride oxide hollow nanoprism for highly efficient and robust water splitting[J]. ACS Applied Energy Materials, 2019, 2(6): 3999-4007.
doi: 10.1021/acsaem.9b00449 |
[38] |
GUO P, WANG Z, ZHANG T, ET al. Initiating an efficient electrocatalyst for water splitting via valence configuration of cobalt-iron oxide[J]. Applied Catalysis B: Environmental, 2019, 258:117968.
doi: 10.1016/j.apcatb.2019.117968 |
[39] |
ZHU Y P, MA T Y, JARONIEC M, et al. Self-templating synthesis of hollow Co3O4 microtube arrays for highly efficient water electrolysis[J]. Angew Chem Int Ed Engl, 2017, 56(5): 1324-1328.
doi: 10.1002/anie.201610413 |
[40] |
LI J, WANG Y, ZHOU T, et al. Nanoparticle superlattices as efficient bifunctional electrocatalysts for water splitting[J]. J Am Chem Soc, 2015, 137(45): 14305-14312.
doi: 10.1021/jacs.5b07756 |
[41] |
CHANDRASEKARAN S, ZHANG P, PENG F, et al. Tailoring the geometric and electronic structure of tungsten oxide with manganese or vanadium doping toward highly efficient electrochemical and photoelectrochemical water splitting[J]. Journal of Materials Chemistry A, 2019, 7(11): 6161-6172.
doi: 10.1039/C8TA12238E |
[42] |
YU X, YU Z Y, ZHANG X L, et al. Highly disordered cobalt oxide nanostructure induced by sulfur incorporation for efficient overall water splitting[J]. Nano Energy, 2020, 71:104652.
doi: 10.1016/j.nanoen.2020.104652 |
[43] |
ZHANG X, DU X. Oxygen vacancies confined in nickel oxide nanoprism arrays for promoted electrocatalytic water splitting[J]. New Journal of Chemistry, 2020, 44(5): 1703-1706.
doi: 10.1039/C9NJ05940G |
[44] |
LIU X, GONG M, DENG S, et al. Transforming damage into benefit: Corrosion engineering enabled electrocatalysts for water splitting[J]. Advanced Functional Materials, 2021, 31.DOI: 10.1002/adfm.202009032.
doi: 10.1002/adfm.202009032 |
[45] |
QIU H J, FANG G, GAO J, et al. Noble metal-free nanoporous high-entropy alloys as highly efficient electrocatalysts for oxygen evolution reaction[J]. ACS Materials Letters, 2019, 1(5): 526-533.
doi: 10.1021/acsmaterialslett.9b00414 |
[46] |
LIU J, ZHU D, LING T, et al. S-NiFe2O4 ultra-small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH[J]. Nano Energy, 2017, 40: 264-273.
doi: 10.1016/j.nanoen.2017.08.031 |
[47] |
LIANG K, GUO L, MARCUS K, et al. Overall water splitting with room-temperature synthesized NiFe oxyfluoride nanoporous films[J]. ACS Catalysis, 2017, 7(12): 8406-8412.
doi: 10.1021/acscatal.7b02991 |
[48] |
TANG T, JIANG W J, NIU S, et al. Kinetically controlled coprecipitation for general fast synthesis of sandwiched metal hydroxide nanosheets/graphene composites toward efficient water splitting[J]. Advanced Functional Materials, 2018, 28(3). DOI: 10.1002/adfm.201704594.
doi: 10.1002/adfm.201704594 |
[49] |
TAHIR M, MAHMOOD N, PAN L, et al. Efficient water oxidation through strongly coupled graphitic C3N4 coated cobalt hydroxide nanowires[J]. Journal of Materials Chemistry A, 2016, 4(33): 12940-12946.
doi: 10.1039/C6TA05088C |
[50] |
RAO Y, WANG Y, NING H, et al. Hydrotalcite-like Ni(OH)2 nanosheets in situ grown on nickel foam for overall water splitting[J]. ACS Appl Mater Interfaces, 2016, 8(49): 33601-33607.
doi: 10.1021/acsami.6b11023 |
[51] |
NIU S, JIANG W J, TANG T, et al. Facile and scalable synthesis of robust Ni(OH)2 nanoplate arrays on NiAl foil as hierarchical active scaffold for highly efficient overall water splitting[J]. Advanced Science, 2017, 4(8). DOI: 10.1002/advs.201700084.
doi: 10.1002/advs.201700084 |
[52] |
LEI L, HUANG D, ZHOU C, et al. Demystifying the active roles of NiFe-based oxides/(oxy)hydroxides for electrochemical water splitting under alkaline conditions[J]. Coordination Chemistry Reviews, 2020.DOI: 10.1016/j.ccr.2019.213177.
doi: 10.1016/j.ccr.2019.213177 |
[53] | QIU Z, TAI C, NIKLASSON G A, et al. Direct observation of active catalyst surface phases and the effect of dynamic self-optimization in NiFe-layered double hydroxides for alkaline water splitting[J]. Energy & Environmental Science, 2019, 12(2): 572-581. |
[54] |
BABAR P, LOKHANDE A, SHIN H H, et al. Cobalt iron hydroxide as a precious metal-free bifunctional electrocatalyst for efficient overall water splitting[J]. Small, 2018, 14(7). DOI: 10.1002/smll.201702568.
doi: 10.1002/smll.201702568 |
[55] |
FENG Y, WANG X, HUANG J, et al. Decorating CoNi layered double hydroxides nanosheet arrays with fullerene quantum dot anchored on Ni foam for efficient electrocatalytic water splitting and urea electrolysis[J]. Chemical Engineering Journal, 2020, 390:124525.
doi: 10.1016/j.cej.2020.124525 |
[56] |
JIA Y, ZHANG L, GAO G, et al. A Heterostructure Coupling of Exfoliated Ni-Fe Hydroxide Nanosheet and Defective Graphene as a Bifunctional Electrocatalyst for Overall Water Splitting[J]. Advanced Materials, 2017, 29(17):1700017.
doi: 10.1002/adma.201700017 |
[57] |
ZHANG Q, BEDFORD N M, PAN J, et al. A fully reversible water electrolyzer cell made up from FeCoNi (oxy)hydroxide atomic layers[J]. Advanced Energy Materials, 2019, 9(29):1901312.
doi: 10.1002/aenm.201901312 |
[58] |
HAN L, DIAO L, QIN K, et al. Nitrogen modification enhances the electrocatalytic overall water splitting of NiFe layered double hydroxides in alkaline media[J]. Materials Letters, 2020, 263.DOI: 10.1016/j.matlet.2019.127162.
doi: 10.1016/j.matlet.2019.127162 |
[59] |
ZHU X, TANG C, WANG H F, et al. Monolithic-structured ternary hydroxides as freestanding bifunctional electrocatalysts for overall water splitting[J]. Journal of Materials Chemistry A, 2016, 4(19): 7245-7250.
doi: 10.1039/C6TA02216B |
[60] |
DONH K N, ZHENG P, DAI Z, et al. Ultrathin porous NiFeV ternary layer hydroxide nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting[J]. Small, 2018, 14(8).DOI: 10.1002/smll.201703257.
doi: 10.1002/smll.201703257 |
[61] | BAO J, WANG Z, XIE J, et al. A ternary cobalt-molybdenum-vanadium layered double hydroxide nanosheet array as an efficient bifunctional electrocatalyst for overall water splitting[J]. Chem Commun(Camb), 2019, 55(24): 3521-3524. |
[62] |
TONG Y, YU X, SHI G. Cobalt disulfide/graphite foam composite films as self-standing electrocatalytic electrodes for overall water splitting[J]. Phys Chem Chem Phys, 2017, 19(6): 4821-4826.
doi: 10.1039/C6CP08176B |
[63] |
LYU J J, ZHAO J, FANG H, et al. Incorporating nitrogen-doped graphene quantum dots and Ni3S2nanosheets: A synergistic electrocatalyst with highly enhanced activity for overall water splitting[J]. Small, 2017, 13(24).DOI: 10.1002/smll.201700264.
doi: 10.1002/smll.201700264 |
[64] |
HUANG S, MENG Y, HE S, et al. N- O-, and S-tridoped carbon-encapsulated Co9S8 nanomaterials: Efficient bifunctional electrocatalysts for overall water splitting[J]. Advanced Functional Materials, 2017, 27(17).DOI: 10.1002/adfm.201606585.
doi: 10.1002/adfm.201606585 |
[65] |
JIANG K, LUO M, LIU Z, et al. Rational strain engineering of single-atom ruthenium on nanoporous MoS2 for highly efficient hydrogen evolution[J]. Nature Communications, 2021, 12(1).DOI: 10.1038/s41467-021-21956-0.
doi: 10.1038/s41467-021-21956-0 |
[66] |
ZAHRAN Z N, MOHAMED E A, TSUBONOUCHI Y, et al. Electrocatalytic water splitting with unprecedentedly low overpotentials by nickel sulfide nanowires stuffed into carbon nitride scabbards[J]. Energy & Environmental Science, 2021.DOI: 10.1039/D1EE00509J.
doi: 10.1039/D1EE00509J |
[67] |
YU Q, ZHANG Z, QIU S, et al. A Ta-TaS2 monolith catalyst with robust and metallic interface for superior hydrogen evolution[J]. Nat Commun, 2021, 12(1): 6051.
doi: 10.1038/s41467-021-26315-7 |
[68] |
JI X, LIN Y, ZENG J, et al. Graphene/MoS2/FeCoNi(OH)x and Graphene/MoS2/FeCoNiPx multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting[J]. Nature Communications, 2021, 12(1). DOI: 10.1038/s41467-021-21742-y.
doi: 10.1038/s41467-021-21742-y |
[69] |
XUE Y, ZUO Z, LI Y, et al. Graphdiyne-supported NiCo2S4 Nanowires: A highly active and stable 3D bifunctional electrode material[J]. Small, 2017, 13(31).DOI: 10.1002/smll.201700936.
doi: 10.1002/smll.201700936 |
[70] |
LEE T H, LEE S A, ARK H, et al. Understanding the enhancement of the catalytic properties of goethite by transition metal doping: Critical role of O* formation energy relative to OH* and OOH*[J]. ACS Applied Energy Materials, 2020, 3(2): 1634-1643.
doi: 10.1021/acsaem.9b02140 |
[71] | SUN H, YAN Z, LIU F, et al. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution[J]. Advanced Materials, 2020, 32(3):1-18. |
[72] |
LIANG H, GANDI A N, ANJUM D H, et al. Plasma-assisted synthesis of NiCoP for efficient overall water splitting[J]. Nano Lett, 2016, 16(12): 7718-7725.
doi: 10.1021/acs.nanolett.6b03803 |
[73] |
QU M, JIANG Y, YANG M, et al. Regulating electron density of NiFe-P nanosheets electrocatalysts by a trifle of Ru for high-efficient overall water splitting[J]. Applied Catalysis B: Environmental, 2020, 263.DOI: 10.1016/j.apcatb.2019.118324.
doi: 10.1016/j.apcatb.2019.118324 |
[74] |
QIU B, CAI L, WANG Y, et al. Fabrication of nickel-cobalt bimetal phosphide nanocages for enhanced oxygen evolution catalysis[J]. Advanced Functional Materials, 2018, 28(17).DOI: 10.1002/adfm.201706008.
doi: 10.1002/adfm.201706008 |
[75] |
LV X W, XU W S, TIAN W W, et al. Activity promotion of core and shell in multifunctional core-shell Co2P@NC electrocatalyst by secondary metal doping for water electrolysis and Zn-air batteries[J]. Small, 2021, 17(38): 2101856.
doi: 10.1002/smll.202101856 |
[76] |
ZHAO Z, SCHIPPER D E, LEITNER A P, et al. Bifunctional metal phosphide FeMnP films from single source metal organic chemical vapor deposition for efficient overall water splitting[J]. Nano Energy, 2017, 39: 444-453.
doi: 10.1016/j.nanoen.2017.07.027 |
[77] | JIA X, ZHAO Y, CHEN G, et al. Ni3FeN nanoparticles derived from ultrathin nife-layered double hydroxide nanosheets: An efficient overall water splitting electrocatalyst[J]. Advanced Energy Materials, 2016, 6(10): 1614-6832. |
[78] |
KOU Z, WANG T, GU Q, et al. Rational design of holey 2D nonlayered transition metal carbide/nitride heterostructure nanosheets for highly efficient water oxidation[J]. Advanced Energy Materials, 2019, 9(16): 1803768.
doi: 10.1002/aenm.201803768 |
[79] |
YANG H, CHEN Y, WANG C, et al. Confined growth of ultrafine Mo2C nanoparticles embedded in N-doped carbon nanosheet for water splitting[J]. Journal of Alloys and Compounds, 2020, 842.DOI: 10.1016/j.jallcom.2020.155939.
doi: 10.1016/j.jallcom.2020.155939 |
[80] |
WANG H, CAO Y, SUN C, et al. Strongly coupled molybdenum carbide on carbon sheets as a bifunctional electrocatalyst for overall water splitting[J]. ChemSusChem, 2017, 10(18): 3540-3546.
doi: 10.1002/cssc.201701276 |
[81] |
OUYANG T, YE Y Q, WU C Y, et al. Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and beta-Mo2C nanoparticles as bifunctional electrodes for water splitting[J]. Angewandte Chemie International Edition, 2019, 58(15): 4923-4928.
doi: 10.1002/anie.201814262 |
[82] |
MUNIR A, HAQ T U, SALEEM M, et al. Controlled engineering of nickel carbide induced N-enriched carbon nanotubes for hydrogen and oxygen evolution reactions in wide pH range[J]. Electrochimica Acta, 2020, 341:136032.
doi: 10.1016/j.electacta.2020.136032 |
[83] |
ZHANG S, GAO G, HAO J, et al. Low-electronegativity vanadium substitution in cobalt carbide induced enhanced electron transfer for efficient overall water splitting[J]. ACS Appl Mater Interfaces, 2019, 11(46):43261-43269.
doi: 10.1021/acsami.9b16390 |
[84] |
SHEN T H, SPILLANE L, VAVRA J, et al. Oxygen evolution reaction in Ba0.5Sr0.5Co0.8Fe0.2O3-δ aided by intrinsic Co/Fe spinel-like surface[J]. Journal of the American Chemical Society, 2020, 142:15876-15883.
doi: 10.1021/jacs.0c06268 |
[85] | YAN Z, SUN H, CHEN X, et al. Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution[J]. Nature Communications, 2018(9):2373. |
[86] |
GAO L, CUI X, WANG Z, et al. Operando unraveling photothermal-promoted dynamic active sites generation in spinel NiFe2O4 for oxygen evolution[J]. Proceedings of the National Academy of Sciences, 2021, 118(7).DOI: 10.1073/pnas.2023421118.
doi: 10.1073/pnas.2023421118 |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[3] | WANG Zening, LI Wenzhong, LI Donghui, XU Taishan, YU Jun. Construction of the hierarchical autonomous power balance model for software-defined new power systems [J]. Integrated Intelligent Energy, 2024, 46(7): 1-11. |
[4] | HE Fangbo, PEI Ligeng, ZHENG Rui, FAN Kangjian, ZHANG Xiaoman, LI Gengfeng. Construction of new power system in Shaanxi Province with the collaboration of source-network-load-storage [J]. Integrated Intelligent Energy, 2024, 46(7): 40-46. |
[5] | YANG Lei, WANG Rui, MA Lili, SUN Ning, LI Xuelian, CHEN Ting, WANG Shaorong, SHI Caixia. Research on Ca and Fe co-doped PrBaCo2O5+δ as a cathode material of solid oxide fuel cells [J]. Integrated Intelligent Energy, 2024, 46(7): 47-52. |
[6] | DOU Zhenlan, LI Jiawen, ZHANG Chunyan, CAI Zhenqi, YUAN Benfeng, JIA Kunqi, XIAO Guoping, WANG Jianqiang. Spatiotemporal distributed parameter modeling of solid oxide electrolysis cells [J]. Integrated Intelligent Energy, 2024, 46(7): 53-62. |
[7] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
[8] | ZHENG Qingming, JING Yanwei, LIANG Tao, CHAI Lulu, LYU Liangnian. Optimized scheduling on large-scale hydrogen production system for off-grid renewable energy based on DDPG algorithm [J]. Integrated Intelligent Energy, 2024, 46(6): 35-43. |
[9] | YU Haibin, LU Wenzhou, TANG Liang, ZHANG Yuchen, ZOU Xiangyu, JIANG Yuliang, LIU Jiabao. Economic dispatch and profit distribution strategy for multi-agent virtual power plants considering risk preferences [J]. Integrated Intelligent Energy, 2024, 46(6): 66-77. |
[10] | WANG Liang, DENG Song. Anomalous data detection methods for new power systems [J]. Integrated Intelligent Energy, 2024, 46(5): 12-19. |
[11] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
[12] | MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer [J]. Integrated Intelligent Energy, 2024, 46(4): 60-67. |
[13] | WANG Yongli, WANG Yanan, MA Ziben, QIN Yumeng, CHEN Xichang, TENG Yue. Effectiveness evaluation on energy trading systems taking blockchain technology [J]. Integrated Intelligent Energy, 2024, 46(4): 78-84. |
[14] | DING Leyan, KE Song, YANG Jun, SHI Xingye. Control strategy of virtual synchronous generators based on adaptive control parameter setting [J]. Integrated Intelligent Energy, 2024, 46(3): 35-44. |
[15] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||