Integrated Intelligent Energy ›› 2022, Vol. 44 ›› Issue (11): 56-62.doi: 10.3969/j.issn.2097-0706.2022.11.008
• Load Scheduling and Market Mechanism • Previous Articles Next Articles
WU Junda(), ZHAO Yi(
), SUN Wenyao(
)
Received:
2022-04-11
Revised:
2022-05-24
Published:
2022-11-25
Contact:
ZHAO Yi
E-mail:2120117112@qq.com;reef614@163.com;iris6421@163.com
CLC Number:
WU Junda, ZHAO Yi, SUN Wenyao. Carbon emission characteristics model of thermal power units for environmental economic dispatch[J]. Integrated Intelligent Energy, 2022, 44(11): 56-62.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2022.11.008
Table 1
Predicted coal consumption and CO2 emission intensity of units with different capacities g/(kW·h)
负荷率/% | 300 MW | 600 MW | 1 000 MW | |||
---|---|---|---|---|---|---|
煤耗 | 排放强度 | 煤耗 | 排放强度 | 煤耗 | 排放强度 | |
50 | 340.2 | 913.2 | 314.1 | 833.2 | 304.2 | 797.5 |
60 | 337.8 | 898.7 | 311.3 | 827.1 | 299.1 | 793.1 |
70 | 333.3 | 883.6 | 308.5 | 820.5 | 293.5 | 788.3 |
80 | 328.8 | 870.1 | 306.7 | 815.3 | 288.3 | 784.2 |
90 | 322.9 | 849.5 | 304.2 | 808.1 | 284.7 | 781.7 |
100 | 319.6 | 836.3 | 302.1 | 803.5 | 281.2 | 776.5 |
Table 3
Unit performance parameters
机组 编号 | 机组出力 | 煤耗成本系数 | CO2排放系数 | |||||
---|---|---|---|---|---|---|---|---|
Pmax/MW | Pmin/MW | αi /[美元·(MW2·h)-1] | βi /[美元·(MW·h) -1] | γi /(美元·h-1) | ai /[t·(MW2·h)-1] | bi /[t·(MW·h)-1] | ci/(t·h-1) | |
1 | 455 | 150 | 0.000 31 | 17.26 | 970 | 0.020 | -2.72 | 132 |
2 | 455 | 150 | 0.000 48 | 16.19 | 1 000 | 0.022 | -2.86 | 130 |
3 | 130 | 20 | 0.002 11 | 16.50 | 680 | 0.058 | -2.35 | 130 |
4 | 130 | 20 | 0.020 00 | 16.60 | 700 | 0.044 | -2.94 | 138 |
5 | 162 | 25 | 0.003 98 | 19.70 | 450 | 0.065 | -2.36 | 125 |
6 | 85 | 25 | 0.000 79 | 27.74 | 480 | 0.075 | -2.36 | 135 |
7 | 80 | 20 | 0.007 12 | 22.26 | 370 | 0.080 | -2.28 | 110 |
8 | 55 | 10 | 0.004 13 | 25.92 | 660 | 0.082 | -1.29 | 157 |
9 | 55 | 10 | 0.001 73 | 27.79 | 670 | 0.084 | -2.14 | 138 |
Table 4
Predicted load of the system in each period
时间 | 负荷/MW | 时间 | 负荷/MW |
---|---|---|---|
01:00 | 625 | 13:00 | 1 250 |
02:00 | 600 | 14:00 | 1 200 |
03:00 | 750 | 15:00 | 1 100 |
04:00 | 850 | 16:00 | 1 000 |
05:00 | 900 | 17:00 | 900 |
06:00 | 1 000 | 18:00 | 1 000 |
07:00 | 1 025 | 19:00 | 1 100 |
08:00 | 1 100 | 20:00 | 1 300 |
09:00 | 1 200 | 21:00 | 1 200 |
10:00 | 1 250 | 22:00 | 1 000 |
11:00 | 1 325 | 23:00 | 800 |
12:00 | 1 350 | 24:00 | 725 |
[1] | 舒印彪, 张丽英, 张运洲, 等. 我国电力碳达峰、碳中和路径研究[J]. 中国工程科学, 2021, 23(6):1-14. |
SHU Yinbiao, ZHANG Liying, ZHANG Yunzhou, et al. Carbon peak and carbon neutrality path for China's power industry[J]. Strategic Study of CAE, 2021, 23(6):1-14. | |
[2] | 朱法华, 王玉山, 徐振, 等. 中国电力行业碳达峰、碳中和的发展路径研究[J]. 电力科技与环保, 2021, 37(3):9-16. |
ZHU Fahua, WANG Yushan, XU Zhen, et al. Research on the development path of carbon peak and carbon neutrality in China's power industry[J]. Electric Power Technology and Environmental, 2021, 37(3):9-16. | |
[3] | 张杨, 冯前伟, 杨用龙, 等. 燃煤电厂烟气SO3排放控制研究进展[J]. 中国电机工程学报, 2021, 41(1):231-248,413. |
ZHANG Yang, FENG Qianwei, YANG Yonglong, et al. A review on SO3 emission control of coal-fired power plant[J]. Proceedings of the CSEE, 2021, 41(1):231-248,413. | |
[4] | 黄雨涵, 丁涛, 李雨婷, 等. 碳中和背景下能源低碳化技术综述及对新型电力系统发展的启示[J]. 中国电机工程学报, 2021, 41(S1):28-51. |
HUANG Yuhan, DING Tao, LI Yuting, et al. Decarbonization technologies and inspirations for the development of novel power systems in the context of carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(S1):28-51. | |
[5] | 胡永飞, 姚艳霞, 苏玲彦, 等. 燃煤电厂固定排放源二氧化碳排放量化方法比对[J]. 中外能源, 2020, 25(12):71-77. |
HU Yongfei, YAO Yanxia, SU Lingyan, et al. Comparison of quantitative methods for CO2 emissions from stationary emission sources of coal-fired power plants[J]. Sino-Global Energy, 2020, 25(12):71-77. | |
[6] | 谭忠富, 于超. 节能减排目标下燃煤机组电量分配模糊优化模型[J]. 电网技术, 2012, 36(1):219-223. |
TAN Zhongfu, YU Chao. A fuzzy optimization model for allocation of generated energy among coal-fired units with targets of energy saving and emission reduction[J]. Power System Technology, 2012, 36(1):219-223. | |
[7] |
RAMANATHAN R. Emission constrained economic dispatch[J]. IEEE Transactions on Power Systems, 1994, 9(4):1994-2000.
doi: 10.1109/59.331461 |
[8] |
VENKATESH P, GNANADASS R, PADHY N P. Comparison and application of evolutionary programming techniques to combined economic emission dispatch with line flow constraints[J]. IEEE Trans on Power Systems, 2003, 18(2):688-697.
doi: 10.1109/TPWRS.2003.811008 |
[9] |
KULKARNI P S, KOTHARI A G, KOTHARI D P. Combined economic and emission dispatch using improved back propagation neural network[J]. Electric Machines and Power Systems, 2000, 28(1):31-44.
doi: 10.1080/073135600268496 |
[10] | 陈功贵, 陈金富, 段献忠. 考虑备用约束和阀点效应的电力系统环境经济优化调度[J]. 电力自动化设备, 2009, 29(8):18-22. |
CHEN Gonggui, CHEN Jinfu, DUAN Xianzhong. Environmental and economic dispatch with reserve constraints and valve-point effects[J]. Electric Power Automation Equipment, 2009, 29(8):18-22. | |
[11] | 李辉, 孙雪丽, 庞博, 等. 基于碳减排目标与排放标准约束情景的火电大气污染物减排潜力[J]. 环境科学, 2021, 42(12):5563-5573. |
LI Hui, SUN Xueli, PANG Bo, et al. Emission reduction potential of air pollutants of thermal power industry based on carbon emission reduction target and emission standard constraint scenarios[J]. Environmental Science, 2021, 42(12):5563-5573. | |
[12] | 李嘉媚, 艾芊, 殷爽睿. 虚拟电厂参与调峰调频服务的市场机制与国外经验借鉴[J]. 中国电机工程学报, 2022, 42(1):37-56. |
LI Jiamei, AI Qian, YIN Shuangrui. Market mechanism and foreign experience of virtual power plant participating in peak-regulation and frequency-regulation[J]. Proceedings of the CSEE, 2022, 42(1):37-56. | |
[13] | 龚胜, 石奇光, 冒玉晨, 等. 我国火电机组灵活性现状与技术发展[J]. 应用能源技术, 2017(5):1-6. |
GONG Sheng, SHI Qiguang, MAO Yuchen, et al. Present situation and development of flexible technology of thermal power units in China[J]. Applied Energy Technology, 2017(5):1-6. | |
[14] | 李晖, 刘栋, 姚丹阳. 面向碳达峰碳中和目标的我国电力系统发展研判[J]. 中国电机工程学报, 2021, 41(18):6245-6259. |
LI Hui, LIU Dong, YAO Danyang. Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(18):6245-6259. | |
[15] | 刘惠, 蔡博峰, 张立, 等. 中国电力行业CO2减排技术及成本研究[J]. 环境工程, 2021, 39(10):8-14. |
LIU Hui, CAI Bofeng, ZHANG Li, et al. Research on CO2 emission reduction technology and cost in China's power industry[J]. Environmental Engineering, 2021, 39(10):8-14. | |
[16] | 任世华, 谢亚辰, 焦小淼, 等. 煤炭开发过程碳排放特征及碳中和发展的技术途径[J]. 工程科学与技术, 2022, 54(1):60-68. |
REN Shihua, XIE Yachen, JIAO Xiaomiao, et al. Characteristics of carbon emissions during coal development and technical approaches for carbon neutral development[J]. Advanced Engineering Sciences, 2022, 54(1):60-68. | |
[17] | 李峥辉, 卢伟业, 庞晓坤, 等. 火电企业CO2排放在线监测系统的研发应用[J]. 洁净煤技术, 2020, 26(4):182-189. |
LI Zhenghui, LU Weiye, PANG Xiaokun, et al. Research and application of on-line monitoring system for CO2 emissions from thermal power enterprises[J]. Clean Coal Technology, 2020, 26(4):182-189. | |
[18] |
董玉亮, 袁家海, 马丽荣. 面向灵活性发电的燃煤机组大气排放特性分析[J]. 发电技术, 2018, 39(5):425-432.
doi: 10.12096/j.2096-4528.pgt.2018.065 |
DONG Yuliang, YUAN Jiahai, MA Lirong. Air emissions characteristics of coal-fired power unit for flexibility generation[J]. Power Generation Technology, 2018, 39(5):425-432.
doi: 10.12096/j.2096-4528.pgt.2018.065 |
|
[19] |
ONGSAKUL W, PETCHARAKS N. Unit commitment by enhanced adaptive Lagrangian relaxation[J]. IEEE Transactions on Power Systems, 2004, 19(1): 620-628.
doi: 10.1109/TPWRS.2003.820707 |
[20] | 郭丹阳, 班明飞, 于继来. 生态GDP核算体系下的差别化燃煤机组安全约束组合模型[J]. 中国电机工程学报, 2019, 39(2):524-535,649. |
GUO Danyang, BAN Mingfei, YU Jilai. Security-constrained unit commitment model for differentiated coal-fired units under ecological GDP accounting system[J]. Proceedings of the CSEE, 2019, 39(2):524-535,649. | |
[21] | 王漪, 柳焯, 柳进. 受基本方程规范的火电机组耗量特性系数辨识[J]. 中国电机工程学报, 2017, 37(4):1151-1160. |
WANG Yi, LIU Zhuo, LIU Jin. Fuel consumption characteristic coefficients identification restricted to basic equations for thermal power units[J]. Proceedings of the CSEE, 2017, 37(4):1151-1160. | |
[22] | 刘盛松, 邰能灵, 侯志俭, 等. 基于最优潮流与模糊贴近度的电力系统环境保护研究[J]. 中国电机工程学报, 2003, 23(4):25-30. |
LIU Shengsong, TAI Nengling, HOU Zhijian, et al. Research on power system environmental protection based on optimal power flow and fuzzy closeness[J]. Proceedings of the CSEE, 2003, 23(4):25-30. | |
[23] | 张晓花, 赵晋泉, 陈星莺. 节能减排多目标机组组合问题的模糊建模及优化[J]. 中国电机工程学报, 2010, 30(22):71-76. |
ZHANG Xiaohua, ZHAO Jinquan, CHEN Xingying. Multi-objective unit commitment fuzzy modeling and optimization for energy-saving and emission reduction[J]. Proceedings of the CSEE, 2010, 30(22):71-76. | |
[24] | 马双忱, 杨鹏威, 王放放, 等. “双碳”目标下传统火电面临的挑战与对策[J]. 华电技术, 2021, 43(12):36-45. |
MA Shuangchen, YANG Pengwei, WANG Fangfang, et al. Challenges and countermeasures of traditional thermal power under the goals of carbon neutrality and carbon peaking[J]. Huadian Technology, 2021, 43(12): 36-45. |
[1] | LI Feifei, XU Huiwei, CUI Jindong. Research on the influencing factors of carbon emissions from petrochemical industry in Jilin Province based on the STIRPAT model [J]. Integrated Intelligent Energy, 2024, 46(8): 12-19. |
[2] | LI Feifei, WANG Shuhong, CUI Jindong. Study on influencing factors of automobile carbon emissions from the perspective of whole life cycle: A case study of Jilin Province [J]. Integrated Intelligent Energy, 2024, 46(8): 20-27. |
[3] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[4] | WANG Zening, LI Wenzhong, LI Donghui, XU Taishan, YU Jun. Construction of the hierarchical autonomous power balance model for software-defined new power systems [J]. Integrated Intelligent Energy, 2024, 46(7): 1-11. |
[5] | HE Fangbo, PEI Ligeng, ZHENG Rui, FAN Kangjian, ZHANG Xiaoman, LI Gengfeng. Construction of new power system in Shaanxi Province with the collaboration of source-network-load-storage [J]. Integrated Intelligent Energy, 2024, 46(7): 40-46. |
[6] | WANG Jun, TIAN Hao, ZHAO Ergang, SHU Zhan, WAN Zijing. Low-carbon operation control on park-level integrated energy systems considering shared energy storage devices for electric vehicles [J]. Integrated Intelligent Energy, 2024, 46(6): 16-26. |
[7] | YU Sheng, ZHOU Xia, SHEN Xicheng, DAI Jianfeng, LIU Zengji. Risk analysis on the source-grid-load-storage system affected by cyber attacks [J]. Integrated Intelligent Energy, 2024, 46(5): 41-49. |
[8] | LI Yun, ZHOU Shijie, HU Zheqian, LIANG Junyuan, XIAO Leiming. Optimal scheduling of integrated energy systems based on NSGA-Ⅱ-WPA [J]. Integrated Intelligent Energy, 2024, 46(4): 1-9. |
[9] | MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer [J]. Integrated Intelligent Energy, 2024, 46(4): 60-67. |
[10] | SUN Jian, ZHANG Yunfan, CAI Xiaolong, LIU Dingqun. Optimal scheduling of HVAC systems based on predicted loads [J]. Integrated Intelligent Energy, 2024, 46(3): 12-19. |
[11] | WANG Yongxu, ZHOU Tianyu, DENG Genggeng, XU Gang, WANG Zhuo. Plant-level intelligent operation optimization for cogeneration units equipped with absorption heat pumps [J]. Integrated Intelligent Energy, 2024, 46(3): 20-28. |
[12] | XU Cong, HU Yongfeng, ZHANG Aiping, YOU Changfu. Multi-load day-ahead and intra-day forecasting for integrated energy systems based on feature screening [J]. Integrated Intelligent Energy, 2024, 46(3): 45-53. |
[13] | WEI Xikai, TAN Xiaoshi, LIN Ming, CHENG Junjie, XIANG Keqi, DING Shuxin. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035 [J]. Integrated Intelligent Energy, 2024, 46(3): 72-78. |
[14] | LI Chengyun, YANG Dongsheng, ZHOU Bowen, YANG Bo, LI Guangdi. Digitization of new-type electric power systems based on digital twin technology [J]. Integrated Intelligent Energy, 2024, 46(2): 1-11. |
[15] | ZHANG Xinyi, YANG Bo. Stability analysis on islanded microgrids with grid-forming and grid-following converters [J]. Integrated Intelligent Energy, 2024, 46(2): 12-18. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||