Integrated Intelligent Energy ›› 2022, Vol. 44 ›› Issue (5): 30-40.doi: 10.3969/j.issn.2097-0706.2022.05.003
• Summary on Viewpoints • Previous Articles Next Articles
Chang YAN(), Sheng HUANG(
), Yinpeng QU(
)
Published:
2022-05-25
Contact:
Yinpeng QU
E-mail:yanchang@hnu.edu.cn;huang98123@163.com;quyinpeng@hnu.edu.cn
CLC Number:
Chang YAN, Sheng HUANG, Yinpeng QU. Review on hydrogen production technology from offshore wind power to achieve carbon neutrality[J]. Integrated Intelligent Energy, 2022, 44(5): 30-40.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2022.05.003
Table 1
Common structural features of offshore wind turbines
基础形式 | 特征 | 优点 | 缺点 | 适合环境与水深 |
---|---|---|---|---|
重力式 | 组合式钢筋混凝土外壳,同时需要较重的压舱材料。依靠自重维持结构稳定并克服风机载荷 | 设计简单、造价低廉、安装简便,受海床沙砾影响不大,抗风暴和风浪袭击性能好 | 海水深度的影响很大,随着水深的增加,其重量和造价将成倍增加且需要平整海床 | 水深不超过20 m的非淤泥质的海床 |
单桩式 | 桩身由钢管焊接组成,桩的直径根据海水水深及风电机组的装机容量而定,在4~7 m,钢管壁厚50~70 mm | 结构简单、受力明确、施工工期短、经济性较好 | 坚硬海床环境下施工成本高 | 水深不超过30 m且具有较好持力层的海域 |
三脚架式 | 定位于海底3根钢管桩的桩顶由桩管套连接上部三脚架结构,构成组合式多桩基础 | 刚度、强度较高,适用于各种海床条件 | 水深和风电机组单机容量增大,基础结构制作和运输的难度提升很大,可能会超出成本的限制 | 适用水深30~40 m海域 |
导管架式 | 钢质空间框架式结构 | 杆径小、强度高、质量轻,受波浪流作用小,对不同地质环境适应性强 | 随着水深的增长,基础的造价会随之大幅增长 | 水深5~50 m海域 |
多桩式 | 由桩基和承台2部分组成,桩基均匀布置在承台底,与承台固端连接,形成承台、桩、土共同受力体系 | 构刚度较大、稳定性好,基础运输、桩基施工、混凝土浇筑等均为常规结构 | 工程量大、工序较多、工期长 | 水深5~20 m海域 |
负压筒式 | 钢桶沉箱结构 | 钢材用量少,施工方便、不受天气制约、易于拆卸 | 沉放、调平难度较大,且永久运行时尚需解决不均匀沉降、基础周围局部冲刷等方面的技术问题 | 水深小于60 m且砂性土或软黏土的海域 |
张力腿式 | 由中心柱、延展臂、张力腿系泊系统以及海底固定系统这四个部分组成 | 稳定性良好,同时建造成本相对较低 | 张力系泊系统复杂、安装费用高,张力筋腱张力受海流影响大,上部结构和系泊系统的频率耦合易发生共振运动 | 水深大于60 m海域 |
立柱式 | 大直径、大吃水的浮式柱状结构 | 纵向波浪激励力小、垂荡运动小 | 横摇和纵摇值较大 | 水深大于100 m海域 |
半潜式 | 由立柱、横梁、斜撑、压水板、系泊线和锚固基础组成 | 吃水能力灵活,水线面积大,在运输和安装时具有良好的稳性 | 结构较为复杂、在波浪中可能经历大型升沉运动 | 水深大于50 m海域 |
驳船式 | 由浮体平台、系泊线、锚固基础组成 | 结构最为简单且生产工艺成熟,经济性较好 | 结构稳定性不如其他3类漂浮式基础 | 水深大于30 m海域 |
Table 2
Main models of offshore wind turbines from domestic and foreign suppiers
企业 | 型号 | 容量/MW | 驱动形式 | 风轮直 径/m |
---|---|---|---|---|
明阳智慧能源 | MySE 16.0-242 | 16 | 半直驱永磁 | 242 |
MHI Vestas | V236-15.0 MW | 15 | 半直驱永磁 | 236 |
西门子歌美飒 | 14 MW-222DD | 14 | 直驱永磁 | 222 |
通用电气 | Haliade X 14 MW-220 | 14 | 直驱永磁 | 220 |
东方电气 | 暂未公布 | 13 | 直驱永磁 | 211 |
通用电气 | Haliade-X 12 MW | 12 | 直驱永磁 | 220 |
西门子歌美飒 | SG 11.0-193DD Flex | 11 | 直驱永磁 | 200 |
东方电气 | D10000-185 | 10 | 直驱永磁 | 185 |
明阳智慧能源 | SE8.0-10-180 | 8~10 | 半直驱永磁 | 180 |
MHI Vestas | V164-9.5 MW | 9.5 | 半直驱永磁 | 164 |
MHI Vestas | V174-9.5 MW | 9.5 | 半直驱永磁 | 174 |
西门子歌美飒 | SG8.0-167DD | 8~9 | 直驱永磁 | 167 |
金风科技 | GW175-8.0 MW | 8 | 直驱永磁 | 175 |
上海电气 | 8.0-167 | 8 | 直驱永磁 | 167 |
明阳智慧能源 | SE7.25-158 | 7.25 | 直驱永磁 | 158 |
远景集团 | EN-161/5.2 | 5.20 | 高速齿轮箱传动 | 161 |
中船重工海装风电 | H171-5 MW | 5 | 高速齿轮箱传动 | 171 |
[1] | 赵国涛, 钱国明, 王盛. “双碳”目标下绿色电力低碳发展的路径分析[J]. 华电技术, 2021, 43(6):11-20. |
ZHAO Guotao, QIAN Guoming, WANG Sheng. Analysis on green and low-carbon development path for power industry to realize carbon peak and carbon neutrality[J]. Huadian Technology, 2021, 43(6):11-20. | |
[2] | Global wind report 2022[R]. Global Wind Energy Council: Brussels, Belgium, 2022. |
[3] | 国家能源局. 国家能源局2022年一季度网上新闻发布会文字实录[EB/OL].(2022-01-28)[2022-04-21]http://www.nea.gov.cn/2022-01/28/c_1310445390.htm. |
[4] | 华经情报网. 2021年中国海上风电行业发展现状分析,双碳循环下行业飞速发展[EB/OL].(2021-03-16)[2022-04-21]http://www.huaon.com/channel/trend/784476.html. |
[5] |
ZHANG X. The development trend of and suggestions for china’s hydrogen energy industry[J]. Engineering, 2021, 7(6):719-721.
doi: 10.1016/j.eng.2021.04.012 |
[6] | Commission European. A hydrogen strategy for a climate-neutral europe[EB/OL].(2020-07-08)[2022-04-21]https://ec.europa.eu/energy/sites/ener/files/hydrogen_strategy.pdf. |
[7] | DECOURT B, LAJOIE B, DEBARRE R, et al. Leading the energy transition[Z]. SBC Energy Institute, 2014. |
[8] |
KALDELLIS J K, APOSTOLOU D, KAPSALI M, et al. Environmental and social footprint of offshore wind energy:Comparison with onshore counterpart[J]. Renewable Energy, 2016, 92:543-556.
doi: 10.1016/j.renene.2016.02.018 |
[9] | 关新, 赵建, 牛阔, 等. 海上风力机固定单桩基础支撑工况冲击响应研究[J]. 沈阳工程学院学报(自然科学版), 2021, 17(4):1-5. |
GUAN Xin, ZHAO Jian, NIU Kuo, et al. Study on impact response for single pile foundation supported of offshore wind turbine[J]. Journal of Shenyang Institute of Engineering(Natural Science), 2021, 17(4):1-5. | |
[10] |
ESTEBAN M D, LÓPEZ-GUTIÉRREZ J S, NEGRO V. Gravity-based foundations in the offshore wind sector[J]. Journal of Marine Science and Engineering, 2019, 7(3):64.
doi: 10.3390/jmse7030064 |
[11] | 田会元, 许洪露. 基于ANSYS的海上风机重力式基础载荷施加形式研究[J]. 水电与新能源, 2019, 33(3):69-72. |
TIAN Huiyuan, XU Honglu. Loading form analysis of gravity-type foundation of offshore wind turbines based on ansys software[J]. Hydropower and New Energy, 2019, 33(3):69-72. | |
[12] | 任彦忠, 李光明, 梁峰, 等. 复杂条件下近海风电机组单桩基础设计及优化[J]. 风能, 2020(1):88-95. |
[13] | 陈修凯. 海上风力发电及其关键技术分析[J]. 通信电源技术, 2018, 35(12):48-49. |
CHEN Xiukai. Offshore wind power generation and its key technology analysis[J]. Telecom Power Technology, 2018, 35(12):48-49. | |
[14] | 袁汝华, 黄海龙, 孙道青, 等. 海上风电风机基础结构形式及安装技术研究[J]. 能源与节能, 2018(12):59-61. |
YUAN Ruhua, HUANG Hailong, SUN Daoqing, et al. Research on basic structure and installation technology of offshore wind turbine[J]. Energy and Energy Conservation, 2018(12):59-61. | |
[15] | 李炜, 张敏, 刘振亚, 等. 三脚架式海上风电基础结构基频敏感性研究[J]. 太阳能学报, 2015, 36(1):90-95. |
LI Wei, ZHANG Min, LIU Zhenya, et al. Fundamental structural frequency analysis for tripod-type offshore wind turbine[J]. Acta Energiae Solaris Sinicaacta Energiae Solaris Sinica, 2015, 36(1):90-95. | |
[16] | 王安安. 新型张力腿式双模块海上风力机动力响应研究[D]. 大连: 大连理工大学, 2021. |
[17] |
SHI W, JIANG J, SUN K, et al. Aerodynamic performance of semi-submersible floating wind turbine under pitch motion[J]. Sustainable Energy Technologies and Assessments, 2021, 48:101556.
doi: 10.1016/j.seta.2021.101556 |
[18] | RAJESWARI K, NALLAYARASU S. Experimental and numerical investigation on the suitability of semi-submersible floaters to support vertical axis wind turbine[J]. Ships and Offshore Structures, 2021:1-12. |
[19] | 王静爱, 左伟. 中国地理图集[M]. 北京: 中国地图出版社, 2010. |
[20] | 黄子果. 海上风电机组机型发展的技术路线对比[J]. 中外能源, 2019, 24(8):29-35. |
[21] | SETHURAMAN L, VIJAYAKUMAR G, ANANTHAN S, et al. Made 3D:Enabling the next generation of high-torque density wind generators by additive design and 3D printing[J]. Forschungim Ingenieurwesen, 2021, 85(2):287-311. |
[22] | SETHURAMAN L, VIJAYAKUMAR G. A new shape optimization approach for lightweighting electric machines inspired by additive manufacturing[R]. National Renewable Energy Laboratory,Golden,COlorado(United States), 2022. |
[23] | ZHU G, LI L, LIU X, et al. Design optimization of a HTS-modulated PM wind generator[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(8):1-4. |
[24] | KIM C, SUNG H J, GO B S, et al. Design,fabrication, and testing of a full-scale HTS coil for a 10 MW HTS wind power generator[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(5):1-5. |
[25] | KIM C, SUNG H J, GO B S, et al. Design and property analysis of a performance evaluation system for HTS wind power generators[J]. IEEE Transactions on Applied Superconductivity, 2020, 30(4):1-5. |
[26] |
ZHU X, CHENG M. Design and analysis of 10 MW class HTS exciting double stator direct-drive wind generator with stationary seal[J]. IEEE Access, 2019, 7:51129-51139.
doi: 10.1109/ACCESS.2019.2911298 |
[27] |
CAPURSO T, STEFANIZZI M, TORRESI M, et al. Perspective of the role of hydrogen in the 21st century energy transition[J]. Energy Conversion and Management, 2022, 251:114898.
doi: 10.1016/j.enconman.2021.114898 |
[28] | DHABI A. Global Renwable Outlook:Energy transformation 2050[R]. Univ Bonn Germany: International Renewable Energy Agency, 2020. |
[29] | International Renewable Energy Agency. Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1.5 ℃ Climate Goal[R]. 2020. |
[30] |
LUO M, YI Y, WANG S, et al. Review of hydrogen production using chemical-looping technology[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 3186-3214.
doi: 10.1016/j.rser.2017.07.007 |
[31] | TAIBI E, MIRANDA R, VANHOUDT W, et al. Hydrogen from renewable power:Technology outlook for the energy transition[R]. 2018. |
[32] |
BUTTLER A, SPLIETHOFF H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids:A review[J]. Renewable and Sustainable Energy Reviews, 2018, 82:2440-2454.
doi: 10.1016/j.rser.2017.09.003 |
[33] |
KUMAR S S, HIMABINDU V. Hydrogen production by PEM water electrolysis--A review[J]. Materials Science for Energy Technologies, 2019, 2(3):442-454.
doi: 10.1016/j.mset.2019.03.002 |
[34] |
POIMENIDIS I A, TSANAKAS M D, PAPAKOSTA N, et al. Enhanced hydrogen production through alkaline electrolysis using laser-nanostructured nickel electrodes[J]. International Journal of Hydrogen Energy, 2021, 46(75):37162-37173.
doi: 10.1016/j.ijhydene.2021.09.010 |
[35] |
AMORES E, SÁNCHEZ M M, SÁNCHEZ M. Effects of the marine atmosphere on the components of an alkaline water electrolysis cell for hydrogen production[J]. Results in Engineering, 2021, 10:100235.
doi: 10.1016/j.rineng.2021.100235 |
[36] |
BARCO-BURGOS J, EICKER U, SALDAÑA-ROBLES N, et al. Thermal characterization of an alkaline electrolysis cell for hydrogen production at atmospheric pressure[J]. Fuel, 2020, 276:117910.
doi: 10.1016/j.fuel.2020.117910 |
[37] | GUO Y, LI G, ZHOU J, et al. Comparison between hydrogen production by alkaline water electrolysis and hydrogen production by PEM electrolysis[C]// IOP Conference Series: Earth and Environmental Science.IOP Publishing, 2019, 371(4):42022. |
[38] |
WIRKERT F J, ROTH J, JAGALSKI S, et al. A modular design approach for PEM electrolyser systems with homogeneous operation conditions and highly efficient heat management[J]. International Journal of Hydrogen Energy, 2020, 45(2):1226-1235.
doi: 10.1016/j.ijhydene.2019.03.185 |
[39] | MARIC R, YU H. Proton exchange membrane water electrolysis as a promising technology for hydrogen production and energy storage[J]. Nanostructures in Energy Generation,Transmission and Storage, 2019:13. |
[40] |
VILLAGRA A, MILLET P. An analysis of PEM water electrolysis cells operating at elevated current densities[J]. International Journal of Hydrogen Energy, 2019, 44(20): 9708-9717.
doi: 10.1016/j.ijhydene.2018.11.179 |
[41] |
FRENSCH S H, FOUDA O F, SERRE G, et al. Influence of the operation mode on PEM water electrolysis degradation[J]. International Journal of Hydrogen Energy, 2019, 44(57):29889-29898.
doi: 10.1016/j.ijhydene.2019.09.169 |
[42] |
ZHANG F, ZHAO P, NIU M, et al. The survey of key technologies in hydrogen energy storage[J]. International Journal of Hydrogen Energy, 2016, 41(33):14535-14552.
doi: 10.1016/j.ijhydene.2016.05.293 |
[43] |
ABE J, POPOOLA, AJENIFUJA E, et al. Hydrogen energy, economy and storage:Review and recommendation[J]. International Journal of Hydrogen Energy, 2019, 44(29):15072-15086.
doi: 10.1016/j.ijhydene.2019.04.068 |
[44] | 李建, 张立新, 李瑞懿, 等. 高压储氢容器研究进展[J]. 储能科学与技术, 2021, 10(5):1835-1844. |
LI Jian, ZHANG Lixin, LI Ruiyi, et al. High-pressure gaseous hydrogen storage vessels:Current status and prospects[J]. Energy Storage Science and Technology, 2021, 10(5):1835-1844. | |
[45] | PANFILOV M. Underground and pipeline hydrogen storage[M]// Compendium of hydrogen energy. Woodhead Publishing, 2016:91-115. |
[46] |
ANDERSSON J, GRÖNKVIST S. Large-scale storage of hydrogen[J]. International Journal of Hydrogen Energy, 2019, 44(23):11901-11919.
doi: 10.1016/j.ijhydene.2019.03.063 |
[47] | MENG N. An overview of hydrogen storage technologies[J]. Energy Exploration & Exploitation, 2009, 24(3):197-209. |
[48] | GILLETTE J L, KOLPA R L. Overview of interstate hydrogen pipeline systems[R]. Argonne National Lab.(ANL),Argonne,IL(United States), 2008. |
[49] |
BALL M, WEEDA M. The hydrogen economy-vision or reality?[J]. International Journal of Hydrogen Energy, 2015, 40(25):7903-7919.
doi: 10.1016/j.ijhydene.2015.04.032 |
[50] |
FEKETE J R, SOWARDS J W, AMARO R L. Economic impact of applying high strength steels in hydrogen gas pipelines[J]. International Journal of Hydrogen Energy, 2015, 40(33):10547-10558.
doi: 10.1016/j.ijhydene.2015.06.090 |
[51] |
ZHANG F, ZHAO P, NIU M, et al. The survey of key technologies in hydrogen energy storage[J]. International Journal of Hydrogen Energy, 2016, 41(33):14535-14552.
doi: 10.1016/j.ijhydene.2016.05.293 |
[52] |
IORDACHE I, SCHITEA D, GHEORGHE A V, et al. Hydrogen underground storage in Romania,potential directions of development,stakeholders and general aspects[J]. International Journal of Hydrogen Energy, 2014, 39(21):11071-11081.
doi: 10.1016/j.ijhydene.2014.05.067 |
[53] |
PRABHUKHOT P R, WAGH M M, GANGAL A C. A review on solid state hydrogen storage material[J]. Adv Energy Power, 2016, 4(2):11-22.
doi: 10.13189/aep.2016.040202 |
[54] | ZHANG Y H, JIA Z C, YUAN Z M, et al. Development and application of hydrogen storage[J]. Journal of Iron and Steel Research(International), 2015, 22(9):757-770. |
[55] |
EDALATI K, UEHIRO R, IKEDA Y, et al. Design and synthesis of a magnesium alloy for room temperature hydrogen storage[J]. Acta Materialia, 2018, 149:88-96.
doi: 10.1016/j.actamat.2018.02.033 |
[56] |
TARHAN C, CIL M A. A study on hydrogen,the clean energy of the future:Hydrogen storage methods[J]. Journal of Energy Storage, 2021, 40:102676.
doi: 10.1016/j.est.2021.102676 |
[57] | 温源. 风电制氢能量管理系统控制方法研究[D]. 北京: 华北电力大学, 2019. |
[58] | 曹蕃, 郭婷婷, 陈坤洋, 等. 风电耦合制氢技术进展与发展前景[J]. 中国电机工程学报, 2021, 41(6):2187-2201. |
CAO Fan, GUO Tingting, CHEN Kunyang, et al. Progress and development prospect of coupled wind and hydrogen systems[J]. Proceedings of the CSEE, 2021, 41(6):2187-2201. | |
[59] |
LEAHY P, MCKEOGH E, MURPHY J, et al. Development of a viability assessment model for hydrogen production from dedicated offshore wind farms[J]. International Journal of Hydrogen Energy, 2021, 46(48):24620-24631.
doi: 10.1016/j.ijhydene.2020.04.232 |
[60] | MEIER K. Hydrogen production with sea water electrolysis using Norwegian offshore wind energy potentials[J]. International Journal of Energy & Environmental Engineering, 2014, 5(2):1-12. |
[61] |
BABARIT A, GILLOTEAUX J C, CLODIC G, et al. Techno-economic feasibility of fleets of far offshore hydrogen producing wind energy converters[J]. International Journal of Hydrogen Energy, 2018, 43(15):7266-7289.
doi: 10.1016/j.ijhydene.2018.02.144 |
[62] | CHEN J, PAN G, ZHU Y, et al. Benefits of using electrolytic hydrogen for offshore wind on china’s low-carbon energy[C]// 2021 IEEE Sustainable Power and Energy Conference (iSPEC).IEEE, 2021:2184-2189. |
[63] | 鲁军辉, 王随林, 唐进京, 等. 可再生能源与余热协同辅助碳捕集技术研究现状与展望[J]. 华电技术, 2021, 43(11):97-109. |
LU Junhui, WANG Suilin, TANG Jinjing, et al. Review and prospects of carbon capture technology assisted by renewable energy,waste heat and combination of them[J]. Huadian Technology, 2021, 43(11):97-109. | |
[64] | 李扬, 王赫阳, 王永真, 等. 碳中和背景、路径及源于自然的碳中和热能解决方案[J]. 华电技术, 2021, 43(11):5-14. |
LI Yang, WANG Heyang, WANG Yongzhen, et al. Background and routs of carbon neutrality and its nature derived thermal solutions[J]. Huadian Technology, 2021, 43(11):5-14. | |
[65] | 张俊锋, 许文娟, 王跃锜, 等. 面向碳中和的中国碳排放现状调查与分析[J]. 华电技术, 2021, 43(10):1-10. |
ZHANG Junfeng, XU Wenjuan, WANG Yueqi, et al. Investigation and analysis on carbon emission status in China on the path to carbon neutrality[J]. Huadian Technology, 2021, 43(10):1-10. | |
[66] |
BONACINA C N, GASKARE N B, VALENTI G. Assessment of offshore liquid hydrogen production from wind power for ship refueling[J]. International Journal of Hydrogen Energy, 2022, 47(2):1279-1291.
doi: 10.1016/j.ijhydene.2021.10.043 |
[67] |
JANG D, KIM K, KIM K H, et al. Techno-economic analysis and monte carlo simulation for green hydrogen production using offshore wind power plant[J]. Energy Conversion and Management, 2022, 263:115695.
doi: 10.1016/j.enconman.2022.115695 |
[68] | 田甜, 李怡雪, 黄磊, 等. 海上风电制氢技术经济性对比分析[J]. 电力建设, 2021, 42(12):136-144. |
TIAN Tian, LI Yixue, HUANG Lei, et al. Comparative analysis on the economy of hydrogen production technology for offshore wind power consumption[J]. Electric Power Construction, 2021, 42(12):136-144. | |
[69] |
CALADO G, CASTRO R. Hydrogen production from offshore wind parks:Current situation and future perspectives[J]. Applied Sciences, 2021, 11(12):5561.
doi: 10.3390/app11125561 |
[70] | VARONE A, FERRARI M. Power to liquid and power to gas:An option for the German Energiewende[J]. Renewable & Sustainable Energy Reviews, 2015, 45:207-218. |
[71] |
CRIVELLARI A, COZZANI V. Offshore renewable energy exploitation strategies in remote areas by power-to-gas and power-to-liquid conversion[J]. International Journal of Hydrogen Energy, 2020, 45(4):2936-2953.
doi: 10.1016/j.ijhydene.2019.11.215 |
[72] |
MELO D, CHANG-CHIEN L. Synergistic control between hydrogen storage system and offshore wind farm for grid operation[J]. IEEE Transactions on Sustainable Energy, 2013, 5(1):18-27.
doi: 10.1109/TSTE.2013.2272332 |
[73] |
SERNA A, YAHYAOUI I, NORMEY-RICO J E, et al. Predictive control for hydrogen production by electrolysis in an offshore platform using renewable energies[J]. International Journal of Hydrogen Energy, 2017, 42(17):12865-12876.
doi: 10.1016/j.ijhydene.2016.11.077 |
[74] |
KOIWA K, CUI L, ZANMA T, et al. A coordinated control method for integrated system of wind farm and hydrogen production:Kinetic energy and virtual discharge controls[J]. IEEE Access, 2022, 10:28283-28294.
doi: 10.1109/ACCESS.2022.3158567 |
[75] |
IBRAHIM O S, SINGLITICO A, PROSKOVICS R, et al. Dedicated large-scale floating offshore wind to hydrogen:Assessing design variables in proposed typologies[J]. Renewable and Sustainable Energy Reviews, 2022, 160:112310.
doi: 10.1016/j.rser.2022.112310 |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[3] | DOU Zhenlan, LI Jiawen, ZHANG Chunyan, CAI Zhenqi, YUAN Benfeng, JIA Kunqi, XIAO Guoping, WANG Jianqiang. Spatiotemporal distributed parameter modeling of solid oxide electrolysis cells [J]. Integrated Intelligent Energy, 2024, 46(7): 53-62. |
[4] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
[5] | ZHENG Qingming, JING Yanwei, LIANG Tao, CHAI Lulu, LYU Liangnian. Optimized scheduling on large-scale hydrogen production system for off-grid renewable energy based on DDPG algorithm [J]. Integrated Intelligent Energy, 2024, 46(6): 35-43. |
[6] | ZHANG Xunxiang, WU Jiekang, SUN Yehua, PENG Qijian. Capacity allocation optimization of hybrid energy storage systems considering fluctuation control on offshore wind power [J]. Integrated Intelligent Energy, 2024, 46(6): 54-65. |
[7] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
[8] | MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer [J]. Integrated Intelligent Energy, 2024, 46(4): 60-67. |
[9] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[10] | WEI Xikai, TAN Xiaoshi, LIN Ming, CHENG Junjie, XIANG Keqi, DING Shuxin. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035 [J]. Integrated Intelligent Energy, 2024, 46(3): 72-78. |
[11] | LU Wentian. Increment-exchange-based decentralized multi-objective optimal power flow algorithm for active distribution grids [J]. Integrated Intelligent Energy, 2024, 46(2): 43-48. |
[12] | TAN Jiuding, LI Shuaibing, LI Mingche, MA Xiping, KANG Yongqiang, DONG Haiying. Optimized scheduling of the power grid with participation of distributed microgrids considering their uncertainties [J]. Integrated Intelligent Energy, 2024, 46(1): 38-48. |
[13] | FANG Gang, WANG Jing, ZHANG Bobo, WANG Junzhe. Research on optimization algorithm of industrial park microgrid configuration based on Pareto solution set [J]. Integrated Intelligent Energy, 2024, 46(1): 49-55. |
[14] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
[15] | XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development [J]. Integrated Intelligent Energy, 2023, 45(9): 48-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||