Huadian Technology ›› 2021, Vol. 43 ›› Issue (5): 75-79.doi: 10.3969/j.issn.1674-1951.2021.05.012
• New Energy • Previous Articles Next Articles
Received:
2020-08-19
Revised:
2021-02-18
Published:
2021-05-25
CLC Number:
YANG Mingming. Wind speed correction for wind turbine based on convolutional neural network[J]. Huadian Technology, 2021, 43(5): 75-79.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.1674-1951.2021.05.012
[1] | 王晓宇, 丁同光, 摆念宗, 等. 风电机组风向仪测量误差分析与修正方法[J]. 分布式能源, 2019,4(6):57-62. |
WANG Xiaoyu, DING Tongguang, BAI Nianzong, et al. Error analysis and correction method of wind direction meter for wind turbine[J]. Distributed Energy, 2019,4(6):57-62. | |
[2] | 姜全越. 我国风电后市场运营探究[J]. 经贸实践, 2018(18):204-205. |
[3] | 付立, 刘晓光. 基于激光雷达测风仪的风电场风电机组性能评估研究[J]. 华电技术, 2017,39(6):14-16,40. |
FU Li, LIU Xiaoguang. Wind power plant wind turbine unit performance evaluation research based on laser radar anemoscope[J]. Huadian Technology, 2017,39(6):14-16,40. | |
[4] | 张岩, 王冬冬. 激光雷达测风系统在风电机组功率曲线测试中的应用研究[J]. 太阳能学报, 2017,38(6):1489-1494. |
ZHANG Yan, WANG Dongdong. Application of lidar wind measurement system for power curve measurement of wind turbine[J]. Acta Energiae Solaris Sinica, 2017,38(6):1489-1494. | |
[5] | 王晓宇. 风力机尾流对测风仪数据精度的影响研究[D]. 西安:西安理工大学, 2018. |
[6] | 风力发电机组基于机舱风速计法的功率特性测试:GB/T 33225-2016[S]. 北京:中国机械工业联合会, 2016. |
[7] | 刘永前, 高小力, 韩爽, 等. 基于修正风速的风电场等效功率特性模型研究[J]. 华北电力大学学报, 2014,41(3):49-54. |
LIU Yongqian, GAO Xiaoli, HAN Shuang, et al. Study on equivalent power characteristic model of a wind farm based on corrected wind speed[J]. Journal of North China Electric Power University, 2014,41(3):49-54. | |
[8] | 张新房, 徐大平, 柳亦兵, 等. 大型变速风力发电机组的风速软测量[J]. 太阳能学报, 2006(4):321-325. |
ZHANG Xinfang, XU Daping, LIU Yibing, et al. Wind speed soft sensor for large-scale variable speed wind turbine[J]. Acta Energiae Solaris Sinica, 2006(4):321-325. | |
[9] | 高昆仑, 杨帅, 刘思言, 等. 基于一维卷积神经网络的电力系统暂态稳定评估[J]. 电力系统自动化, 2019,43(12):18-26. |
GAO Kunlun, YANG Shuai, LIU Siyan, et al. Transient stability assessment for power system based on one-dimensional convolutional neural network[J]. Automation of Electric Power Systems, 2019,43(12):18-26. | |
[10] | 李东东, 王浩, 杨帆, 等. 基于一维卷积神经网络和Soft-Max分类器的风电机组行星齿轮箱故障检测[J]. 电机与控制应用, 2018,45(6):80-87,108. |
LI Dongdong, WANG Hao, YANG Fan, et al. Fault detection of wind turbine planetary gear box using 1D convolution neural networks and Soft-Max classifier[J]. Electric Machines & Control Application, 2018,45(6):80-87,108. | |
[11] | 沈小军, 付雪姣, 周冲成, 等. 风电机组风速-功率异常运行数据特征及清洗方法[J]. 电工技术学报, 2018,33(14):3353-3361. |
SHEN Xiaojun, FU Xuejiao, ZHOU Chongcheng, et al. Characteristics of outliers in wind speed-power operation data of wind turbines and its cleaning method[J]. Transactions of China Electrotechnical Society, 2018,33(14):3353-3361. | |
[12] | KHOURY E, CAZACLIU B, REMOND S. Control of effective water in recycled aggregate concrete using power curves of the mixer[J]. Materials Today Communications, 2019,21. |
[13] | 袁红亮, 胡义. 基于运行数据的风电机组功率曲线可靠性评估[J]. 西北水电, 2018(5):80-83. |
YUAN Hongliang, HU Yi. Operation-data-based assessment of reliability of WTG power curve[J]. Northwest Hydropower, 2018(5):80-83. | |
[14] | 贾锋, 李征, 蔡旭. 提高大型风电机组恒转速段发电量的变桨策略[J]. 电工技术学报, 2017,32(1):58-68. |
JIA Feng, LI Zheng, CAI Xu. Advanced pitch control for improving power production for large scale wind energy conversion system under constant speed region[J]. Transactions of China Electrotechnical Society, 2017,32(1):58-68. | |
[15] | 周志超, 王成山, 郭力, 等. 变速变桨距风电机组的全风速限功率优化控制[J]. 中国电机工程学报, 2015,35(8):1837-1844. |
ZHOU Zhichao, WANG Chengshan, GUO Li, et al. Output power curtailment control of variable-speed variable-pitch wind turbine generator at all wind speed regions[J]. Proceedings of the CSEE, 2015,35(8):1837-1844. | |
[16] | 张树鑫. 双馈风力发电机变桨与变速协调控制[D]. 兰州:兰州理工大学, 2011. |
[17] | 姜寅, 任荭葳, 陈凯, 等. 基于BP神经网络的风电系统控制器I/O硬件故障自诊断方法[J]. 华电技术, 2020,42(5):55-60. |
JIANG Yin, REN Hongwei, CHEN Kai, et al. Self-detecting method for faults in wind turbine controller I/O hardware based on BP neural network algorithm[J]. Huadian Technology, 2020,42(5):55-60. | |
[18] | 解加盈, 郭鹏. 基于多变量选择的深度神经网络功率曲线建模[J]. 华电技术, 2019,41(8):27-31,52. |
XIE Jiaying, GUO Peng. Deep neural network modeling on power curve based on multi-variable selection[J]. Huadian Technology, 2019,41(8):27-31,52. | |
[19] | 杨明明. 基于机舱传递函数的风机功率曲线研究[J]. 华电技术, 2020,42(5):50-54. |
YANG Mingming. Research on wind turbine power curve based on nacelle transfer function[J]. Huadian Technology, 2020,42(5):50-54. |
[1] | YIN Linfei, MENG Yujie. Short-term wind power forecasting based on DenseNet convolutional neural networks [J]. Integrated Intelligent Energy, 2024, 46(7): 12-20. |
[2] | DU Long, SHA Jianxiu, FAN Bei, HU Jingwei, LIU Zengji. Electricity theft detection method for distribution network CPS based on cyber and physical data [J]. Integrated Intelligent Energy, 2024, 46(5): 20-29. |
[3] | CUI Shuangshuang, SUN Shanxun. Study on the correlation of wind turbine variables under different conditions [J]. Integrated Intelligent Energy, 2022, 44(12): 49-55. |
[4] | FAN Daqian, LIU Bosong, GUO Peng. Wind turbine blades icing detection with multi-parameter models based on AdaBoost algorithm [J]. Huadian Technology, 2021, 43(8): 20-26. |
[5] | ZHANG Jun, SU Yang, LI Yong, CONG Xingliang. Numerical study on the flow control of vortex generators on large wind turbine blades [J]. Integrated Intelligent Energy, 2021, 43(12): 66-71. |
[6] | CAO Li,PAN Qiaobo,WANG Mingyu,MA Dong. Early warning method for wind turbine generator temperature based on HK-SVM [J]. Huadian Technology, 2020, 42(5): 43-49. |
[7] | YANG Mingming. Research on wind turbine power curve based on Nacelle Transfer Function [J]. Huadian Technology, 2020, 42(5): 50-54. |
[8] | JIANG Yin,REN Hongwei,CHEN Kai,ZHU Changjiang. Self-detecting method for faults in wind turbine controller I/O hardware based on BP neural network algorithm [J]. Huadian Technology, 2020, 42(5): 55-60. |
[9] | LI Xinkai,LIU Wei,ZHANG Tingjun,WANG Peiming,ZHAO Jian,SUN Manjie. Study on wind turbine blade protection against lightening applied in comprehensive energy [J]. Huadian Technology, 2020, 42(2): 63-67. |
[10] | WANG Daoxin, CAI Chuangbin, WANG Jinhe. Quantitative analysis on representative influencing factors of wind measurement mast based on power generation [J]. Huadian Technology, 2020, 42(12): 72-77. |
[11] |
XIE Jiaying,GUO Peng.
Deep neural network modeling on power curve based on multivariable selection |
[12] |
Analysis and research on static deviation of the yaw system of wind turbines.
Analysis and research on static deviation of the yaw system of wind turbines |
[13] |
HU Xiangtao,ZHANG Jinlei,XIANG Zongyuan.
Derating and efficiency optimization operation of wind turbines running above cutout wind speed |
[14] |
LEI Yang1,LAN Wei2, SHI Chao1,ZHANG Zhongquan2, LIU Yongzhao3.
Measuring method for wind turbine tower slope based on random sample consensus algorithm
[J]. Huadian Technology, 2018, 40(10): 4-7.
|
[15] |
FU Li, LIU Xiaoguang.
Wind power plant wind turbine unit performance evaluation research based on laser radar anemoscope
[J]. Huadian Technology, 2017, 39(6): 14-16.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||