Integrated Intelligent Energy ›› 2024, Vol. 46 ›› Issue (2): 28-35.doi: 10.3969/j.issn.2097-0706.2024.02.004
• AI Applications in Energy Distribution • Previous Articles Next Articles
JIANG Shanhea(
), LI Weib(
), XU Xiaoyana(
), WANG Dekai(
)
Received:2023-08-30
Revised:2023-11-03
Published:2024-02-25
Contact:
WANG Dekai
E-mail:jshxlxlw@163.com;feiteng.li@163.com;17805620673@163.com;cm1729@163.com
Supported by:CLC Number:
JIANG Shanhe, LI Wei, XU Xiaoyan, WANG Dekai. Short-term wind power forecasting based on variational mode decomposition and generative adversarial networks[J]. Integrated Intelligent Energy, 2024, 46(2): 28-35.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2024.02.004
Table 2
Prediction results of VMD-GAN with various l value
| l | MAE | MSE | RMSE | δmax |
|---|---|---|---|---|
| 0.01 | 24.694 4 | 2 489.314 0 | 49.893 0 | 577.994 6 |
| 0.05 | 26.747 6 | 2 390.992 7 | 48.897 8 | 829.124 8 |
| 0.10 | 21.350 2 | 2 118.766 7 | 46.030 1 | 518.077 9 |
| 0.20 | 26.300 1 | 2 659.534 2 | 51.570 7 | 580.099 7 |
| 0.30 | 25.740 3 | 2 712.210 2 | 52.078 9 | 565.314 7 |
| 0.40 | 26.747 7 | 2 724.080 6 | 52.192 7 | 565.858 8 |
| 0.50 | 29.226 6 | 3 427.549 6 | 58.545 3 | 629.489 4 |
Table 3
Prediction results of various models
| 预测模型 | MAE | MSE | RMSE | δmax |
|---|---|---|---|---|
| ARIMA[ | 53.359 0 | 17 770.382 1 | 133.305 6 | 1 674.928 9 |
| LSTM [ | 72.260 1 | 10 412.7773 | 102.043 0 | 972.853 4 |
| VMD-ARIMA[ | 34.521 1 | 6 054.779 6 | 77.812 5 | 1 514.236 6 |
| VMD-LSTM[ | 39.224 3 | 4 398.470 7 | 66.321 0 | 1 008.752 3 |
| VMD-GAN(l = 0.10) | 21.350 2 | 2 118.766 7 | 46.030 1 | 518.077 9 |
| [1] |
LIU H, CHEN C. Data processing strategies in wind energy forecasting models and applications: A comprehensive review[J]. Applied Energy, 2019, 249: 392-408.
doi: 10.1016/j.apenergy.2019.04.188 |
| [2] |
YANG J, FANG L Q, SONG D R, et al. Review of control strategy of large horizontal‐axis wind turbines yaw system[J]. Wind Energy, 2021, 24(2): 97-115.
doi: 10.1002/we.v24.2 |
| [3] |
WANG Y, HU Q H, SRINIVASAN D, et al. Wind power curve modeling and wind power forecasting with inconsistent data[J]. IEEE Transactions on Sustainable Energy, 2018, 10(1): 16-25.
doi: 10.1109/TSTE.2018.2820198 |
| [4] |
WANG Y, ZOU R M, LIU F, et al. A review of wind speed and wind power forecasting with deep neural networks[J]. Applied Energy, 2021, 304(1): 117766.
doi: 10.1016/j.apenergy.2021.117766 |
| [5] | 薛禹胜, 郁琛, 赵俊华, 等. 关于短期及超短期风电功率预测的评述[J]. 电力系统自动化, 2015, 39(6):141-151. |
| XUE Yusheng, YU Chen, ZHAO Junhua, et al. A review on short-term and ultra-short-term wind power prediction[J]. Automation of Electric Power Systems, 2015, 39(6):141-151. | |
| [6] | 王伟胜, 王铮, 董存, 等. 中国短期风电功率预测技术现状与误差分析[J]. 电力系统自动化, 2021, 45(1): 17-27. |
| WANG Weisheng, WANG Zheng, DONG Cun, et al. Current status and error analysis of short-term wind power forecasting technology in China[J]. Automation of Electric Power System, 2021, 45(1): 17-27. | |
| [7] | 王玉. 基于深度学习的风电场短期风速预测组合模型[D]. 合肥: 中国科学技术大学, 2021. |
| WANG Yu. Combination model of short-term wind speed prediction for wind farm based on deep learning[D]. Hefei: University of Science and Technology of China, 2021. | |
| [8] |
HU J M, HENG J N, WEN J M, et al. Deterministic and probabilistic wind speed forecasting with de-noisingreconstruction strategy and quantile regression based algorithm[J]. Renewable Energy, 2020, 162:1208-1226.
doi: 10.1016/j.renene.2020.08.077 |
| [9] |
MA L, LUAN S Y, JIANG C W, et al. A review on the forecasting of wind speed and generated power[J]. Renewable and Sustainable Energy Reviews, 2009, 13(4): 915-920.
doi: 10.1016/j.rser.2008.02.002 |
| [10] | 庞传军, 尚学伟, 张波, 等. 基于改进梯度提升算法的短期风电功率概率预测[J]. 电力系统自动化, 2022, 46(16): 198-206. |
| PANG Chuanjun, SHAN Xuewei, ZHANG Bo, et al. Short-term wind power probability prediction based on improved gradient boosting machine algorithm[J]. Automation of Electric Power System, 2022, 46(16): 198-206. | |
| [11] | 阎洁, 许成志, 刘永前, 等. 基于风速云模型相似日的短期风电功率预测方法[J]. 电力系统自动化, 2018, 42(6): 53-59. |
| YAN Jie, XU Chengzhi, LIU Yongqian, et al. Short-term wind power prediction method based on wind speed cloud model in similar day[J]. Automation of Electric Power System, 2018, 42(6): 53-59. | |
| [12] |
SHI J, GUO J M, ZHENG S T. Evaluation of hybrid forecasting approaches for wind speed and power generation time series[J]. Renewable and Sustainable Energy Reviews, 2012, 16(5): 3471-3480.
doi: 10.1016/j.rser.2012.02.044 |
| [13] |
SHUKUR O B, LEE M H. Daily wind speed forecasting through hybrid KF-ANN model based on ARIMA[J]. Renewable Energy, 2015, 76: 637-647.
doi: 10.1016/j.renene.2014.11.084 |
| [14] |
DE GIORGI M G, CAMPILONGO S, FICARELLA A, et al. Comparison between wind power prediction models based on wavelet decomposition with least-squares support vector machine (LS-SVM) and artificial neural network (ANN)[J]. Energies, 2014, 7(8): 5251-5272.
doi: 10.3390/en7085251 |
| [15] |
郑真, 朱峰, 马小丽, 等. 基于TL-LSTM的新能源功率短期预测[J]. 综合智慧能源, 2023, 45(1): 41-48.
doi: 10.3969/j.issn.2097-0706.2023.01.005 |
|
ZHENG Zhen, ZHU Feng, MA Xiaoli, et al. Short-term new energy power prediction based on TL-LSTM[J]. Integrated Intelligent Energy, 2023, 45(1): 41-48.
doi: 10.3969/j.issn.2097-0706.2023.01.005 |
|
| [16] | 杨晶显, 张帅, 刘继春, 等. 基于VMD和双重注意力机制LSTM的短期光伏功率预测[J]. 电力系统自动化, 2021, 45(3):174-182. |
| YANG Jingxian, ZHANG Shuai, LIU Jichun, et al. Short-term PV power prediction based on VMD and dual attention mechanism LSTM[J]. Automation of Electric Power Systems, 2021, 45(3):174-182. | |
| [17] | 苗长新, 李昊, 王霞, 等. 基于数据驱动和深度学习的超短期风电功率预测[J]. 电力系统自动化, 2021, 45(14): 22-29. |
| MIAO Changxin, LI Hao, WANG Xia, et al. Data-driven and deep-learning-based ultra-short-term wind power prediction[J]. Automation of Electric Power Systems, 2021, 45(14):22-29. | |
| [18] | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Advances in Neural Information Processing Systems, 2014: 2672-2680. |
| [19] | 王坤峰, 苟超, 段艳杰, 等. 生成式对抗网络 GAN 的研究进展与展望[J]. 自动化学报, 2017, 43(3): 321-332. |
| WANG Kunfeng, GOU Chao, DUAN Yanjie, et al. Generative adversarial networks: The state of the art and beyond[J]. Acta Automatic Sinica, 2017, 43(3):321-332. | |
| [20] | ALDAUSARI N, SOWMYA A, MARCUS N, et al. Video generative adversarial networks: A review[J]. ACM Computing Surveys (CSUR), 2022, 55(2): 1-25. |
| [21] | 王静. 基于多元经验模态分解生成对抗网络的金融时间序列预测[D]. 大连: 大连海事大学, 2020. |
| WANG Jing. Financial time series prediction of adversarial networks based on multivariate empirical mode decomposition[D]. Dalian: Dalian Maritime University, 2020. | |
| [22] | DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2013, 62(3): 531-544. |
| [23] | 李文武, 石强, 王凯, 等. 基于变分模态分解和深度门控网络的径流预测[J]. 水力发电学报, 2020, 39(3): 34-44. |
| LI Wenwu, SHI Qiang, WANG Kai, et al. Runoff prediction based on variational mode decomposition and depth-gated networks[J]. Journal of Hydropower, 2020, 39(3): 34-44. | |
| [24] |
翟广松, 王鹏, 梁鹏勋, 等. 基于纵横交叉算法-门控循环单元的日前电价预测模型[J]. 综合智慧能源, 2022, 44(11): 36-42.
doi: 10.3969/j.issn.2097-0706.2022.11.005 |
|
ZHAI Guangsong, WANG Peng, LIANG Pengxun, et al. Day-ahead electricity price prediction model based on GRU optimized by crossover optimization algorithm[J]. Integrated Intelligent Energy, 2022, 44(11): 36-42.
doi: 10.3969/j.issn.2097-0706.2022.11.005 |
|
| [25] | 简定辉, 李萍, 黄宇航. 基于GA-VMD-ResNet-LSTM网络的短期电力负荷预测[J]. 国外电子测量技术, 2022, 41(10): 15-22. |
| JIAN Dinghui, LI Pin, HUANG Yuhang. Short-term power load forecasting based on GA-VMD-ResNet-LSTM network[J]. Foreign Electronic Measurement Technology, 2022, 41(10): 15-22. | |
| [26] | KINGMA D P, BA J. Adam:A method for stochastic optimization[C]//The 3rd International Conference for Learning Representations, San Diego, 2015:1-15. |
| [27] |
YUNUS K, THIRINGER T, CHEN P Y. ARIMA-based frequency-decomposed modeling of wind speed time series[J]. IEEE Transactions on Power Systems, 2015, 31(4): 2546-2556.
doi: 10.1109/TPWRS.59 |
| [28] |
LIU H, MI X W, LI Y F. Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, LSTM network and ELM[J]. Energy Conversion and Management, 2018, 159: 54-64.
doi: 10.1016/j.enconman.2018.01.010 |
| [1] | REN Yiming, DU Dongsheng, DENG Xiangshuai, LIAN He, ZHAO Zhemin. Fault detection for transmission line insulators based on Real-ESRGAN and improved YOLOv8n [J]. Integrated Intelligent Energy, 2024, 46(7): 29-39. |
| [2] | ZHANG Xunxiang, WU Jiekang, SUN Yehua, PENG Qijian. Capacity allocation optimization of hybrid energy storage systems considering fluctuation control on offshore wind power [J]. Integrated Intelligent Energy, 2024, 46(6): 54-65. |
| [3] | ZHAI Guangsong, WANG Peng, LIANG Pengxun, XIE Zhifeng, YIN Hao. Day-ahead electricity price prediction model based on GRU optimized by crossover optimization algorithm [J]. Integrated Intelligent Energy, 2022, 44(11): 36-42. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||

