Integrated Intelligent Energy ›› 2022, Vol. 44 ›› Issue (11): 36-42.doi: 10.3969/j.issn.2097-0706.2022.11.005
• Load Scheduling and Market Mechanism • Previous Articles Next Articles
ZHAI Guangsong(), WANG Peng(
), LIANG Pengxun(
), XIE Zhifeng(
), YIN Hao(
)
Received:
2022-05-20
Revised:
2022-06-18
Published:
2022-11-25
CLC Number:
ZHAI Guangsong, WANG Peng, LIANG Pengxun, XIE Zhifeng, YIN Hao. Day-ahead electricity price prediction model based on GRU optimized by crossover optimization algorithm[J]. Integrated Intelligent Energy, 2022, 44(11): 36-42.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2022.11.005
Table 1
MI value between different features and electricity price
特征 | MI值 | |
---|---|---|
生产 | 0.587 8 | |
负荷 | 0.415 3 | |
风电 | 0.206 5 | |
计划流量 | 0.574 1 | |
市场容量 | 0.317 9 | |
市场耦 合因素 | 瑞典净交换电量 | 0.095 8 |
挪威净交换电量 | 0.688 0 | |
丹麦净交换电量 | 0.287 6 | |
芬兰净交换电量 | 0.148 9 | |
立陶宛净交换电量 | 0.104 4 | |
拉脱维亚净交换电量 | 0.229 1 | |
爱沙尼亚净交换电量 | 0.317 5 | |
挪威价区2-荷兰交换电量 | 0.193 5 | |
瑞典价区4-德国交换电量 | 0.317 0 | |
丹麦价区1-德国交换电量 | 0.320 7 | |
丹麦价区2-德国交换电量 | 0.215 4 |
[1] | 刘昊, 郭烨, 孙宏斌. 中国跨区跨省电力交易综述及展望[J/OL]. 电力系统自动化, 2022:1-13(2022-04-26)[2022-05-15]. http://kns.cnki.net/kcms/detail/32.1180.TP.20220425.1002.002.html. |
LIU Hao, GUO Ye, SUN Hongbin. Review and prospect of inter-regional and inter-provincial power trading in China[J/OL]. Automation of Electric Power Systems, 2022:1-13(2022-04-26)[2022-05-15]. http://kns.cnki.net/kcms/detail/32.1180.TP.20220425.1002.002.html. | |
[2] | 张一泓, 朱国荣, 蔡永自, 等. 基于自回归积分滑动平均模型的日前电价预测[J]. 自动化技术与应用, 2020, 39(1):125-129,139. |
ZHANG Yihong, ZHU Guorong, CAI Yongzi, et al. Forecast of day-ahead price based on ARIMA model[J]. Techniques of Automation and Applications, 2020, 39(1):125-129,139. | |
[3] |
MUNIAIN P, ZIEL F. Probabilistic forecasting in day-ahead electricity markets: Simulating peak and off-peak prices[J]. International Journal of Forecasting, 2020, 36(4):1193-1210.
doi: 10.1016/j.ijforecast.2019.11.006 |
[4] | 殷豪, 曾云, 孟安波, 等. 基于奇异谱分析的短期电价预测[J]. 电力系统保护与控制, 2019, 47(1):115-122. |
YIN Hao, ZENG Yun, MENG Anbo, et al. Short-term electricity price forecasting based on singular spectrum analysis[J]. Power System Protection and Control, 2019, 47(1):115-122. | |
[5] | 陈杰尧, 陶春华, 马光文, 等. 基于数据挖掘与支持向量机的现货市场出清价预测方法[J]. 电网与清洁能源, 2020, 36(10):14-19,27. |
CHEN Jieyao, TAO Chunhua, MA Guangwen, et al. Forecasting method of spot market clearing price based on data mining and support vector machine[J]. Power System and Clean Energy, 2020, 36(10):14-19,27. | |
[6] | 鲁娅楠, 王金梅, 孙帆. 基于粒子群算法的BP神经网络电价预测研究[J]. 科技创新与应用, 2018(28):15-17. |
LU Yanan, WANG Jinmei, SUN Fan. Research on BP neural network electricity price prediction based on particle swarm optimization[J]. Technology Innovation and Application, 2018(28):15-17. | |
[7] |
UGURLU U, OKSUZ I, TAS O. Electricity price forecasting using recurrent neural networks[J]. Energies, 2018, 11(5):1255.
doi: 10.3390/en11051255 |
[8] | 殷豪, 丁伟锋, 陈顺, 等. 基于长短时记忆网络-纵横交叉算法的含高比例新能源电力市场日前电价预测[J]. 电网技术, 2022, 46(2):472-480. |
YIN Hao, DING Weifeng, CHEN Shun, et al. Day-ahead electricity price forecasting of power market with high proportion of new energy based on LSTM-CSO model[J]. Power System Technology, 2022, 46(2):472-480. | |
[9] | 谢谦, 董立红, 厍向阳. 基于Attention-GRU的短期电价预测[J]. 电力系统保护与控制, 2020, 48(23):154-160. |
XIE Qian, DONG Lihong, SHE Xiangyang. Short-term electricity price forecasting based on Attention-GRU[J]. Power System Protection and Control, 2020, 48(23):154-160. | |
[10] |
MACIEJOWSKA K, NITKA W, WERON T. Enhancing load,wind and solar generation for day-ahead forecasting of electricity prices[J]. Energy Economics, 2021, 99:105273.
doi: 10.1016/j.eneco.2021.105273 |
[11] |
LI W, BECKER D M. Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling[J]. Energy, 2021, 237:121543.
doi: 10.1016/j.energy.2021.121543 |
[12] | 刘达, 雷自强, 孙堃. 基于小波包分解和长短期记忆网络的短期电价预测[J]. 智慧电力, 2020, 48(4):77-83. |
LIU Da, LEI Ziqiang, SUN Kun. Short-term electricity price forecasting based on wavelet packet decomposition & long-term and short-term memory networks[J]. Smart Power, 2020, 48(4):77-83. | |
[13] | 勾玄, 肖先勇. 基于经验模式分解与LSTM神经网络的短期电价预测模型[J]. 西安理工大学学报, 2020, 36(1):129-134. |
GOU Xuan, XIAO Xianyong. Short-term electricity price forecasting model based on empirical mode decomposition and LSTM neural network[J]. Journal of Xi'an University of Technology, 2020, 36(1):129-134. | |
[14] | 张金良, 王明雪. 基于EEMD,SVM和ARMA组合模型的电价预测[J]. 电力需求侧管理, 2020, 22(3):63-68. |
ZHANG Jinliang, WANG Mingxue. Electricity price forecasting based on EEMD,SVM and ARMA combination model[J]. Power Demand Side Management, 2020, 22(3):63-68. | |
[15] | 杨昭, 张钢, 赵俊杰, 等. 基于变分模态分解和改进粒子群算法优化最小二乘支持向量机的短期电价预测[J]. 电气技术, 2021, 22(10):11-16. |
YANG Zhao, ZHANG Gang, ZHAO Junjie, et al. Short term electricity price forecasting based on variational mode decomposition and improved particle swarm optimization-least square support vector machine[J]. Electrical Engineering, 2021, 22(10):11-16. | |
[16] | 陈涛, 吕松, 任廷林, 等. 基于最小二乘支持向量机的周用电量预测方法[J]. 华电技术, 2020, 42(1): 35-40. |
CHEN Tao, LYU Song, REN Tinglin, et al. Prediction method for weekly electricity consumption based on LSSVM algorithm[J]. Huadian Technology, 2020, 42(1): 35-40. | |
[17] | 闫来清, 董泽. 基于k-近邻互信息和WKOPLS的SCR脱硝系统动态预测模型[J]. 中国电机工程学报, 2019, 39(10):2970-2980. |
YAN Laiqing, DONG Ze. Dynamic prediction model of SCR denitrification system based on k-nearest neighbor mutual information and WKOPLS[J]. Proceedings of the CSEE, 2019, 39(10):2970-2980. | |
[18] | 王陈恩, 殷豪, 陈顺, 等. 考虑空间耦合的少数据风电功率预测方法[J/OL]. 南方电网技术, 2022:1-6(2022-02-23)[2022-05-15]. http://kns.cnki.net/kcms/detail/44.1643.TK.20220222.1836.006.html. |
WANG Chenen, YIN Hao, CHEN Shun, et al. Wind power forecasting method with few data considering spatial coupling[J/OL]. Southern Power System Technology, 2022:1-6(2022-02-23)[2022-05-15]. http://kns.cnki.net/kcms/detail/44.1643.TK.20220222.1836.006.html. |
[1] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[2] | WANG Zening, LI Wenzhong, LI Donghui, XU Taishan, YU Jun. Construction of the hierarchical autonomous power balance model for software-defined new power systems [J]. Integrated Intelligent Energy, 2024, 46(7): 1-11. |
[3] | HE Fangbo, PEI Ligeng, ZHENG Rui, FAN Kangjian, ZHANG Xiaoman, LI Gengfeng. Construction of new power system in Shaanxi Province with the collaboration of source-network-load-storage [J]. Integrated Intelligent Energy, 2024, 46(7): 40-46. |
[4] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
[5] | ZHENG Qingming, JING Yanwei, LIANG Tao, CHAI Lulu, LYU Liangnian. Optimized scheduling on large-scale hydrogen production system for off-grid renewable energy based on DDPG algorithm [J]. Integrated Intelligent Energy, 2024, 46(6): 35-43. |
[6] | ZHANG Xunxiang, WU Jiekang, SUN Yehua, PENG Qijian. Capacity allocation optimization of hybrid energy storage systems considering fluctuation control on offshore wind power [J]. Integrated Intelligent Energy, 2024, 46(6): 54-65. |
[7] | YU Haibin, LU Wenzhou, TANG Liang, ZHANG Yuchen, ZOU Xiangyu, JIANG Yuliang, LIU Jiabao. Economic dispatch and profit distribution strategy for multi-agent virtual power plants considering risk preferences [J]. Integrated Intelligent Energy, 2024, 46(6): 66-77. |
[8] | WANG Liang, DENG Song. Anomalous data detection methods for new power systems [J]. Integrated Intelligent Energy, 2024, 46(5): 12-19. |
[9] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
[10] | MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer [J]. Integrated Intelligent Energy, 2024, 46(4): 60-67. |
[11] | WANG Yongli, WANG Yanan, MA Ziben, QIN Yumeng, CHEN Xichang, TENG Yue. Effectiveness evaluation on energy trading systems taking blockchain technology [J]. Integrated Intelligent Energy, 2024, 46(4): 78-84. |
[12] | DING Leyan, KE Song, YANG Jun, SHI Xingye. Control strategy of virtual synchronous generators based on adaptive control parameter setting [J]. Integrated Intelligent Energy, 2024, 46(3): 35-44. |
[13] | REN Yiming, DU Dongsheng, DENG Xiangshuai, LIAN He, ZHAO Zhemin. Power line fault diagnosis based on GRU and GWO-KELM [J]. Integrated Intelligent Energy, 2024, 46(3): 54-62. |
[14] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[15] | WEI Xikai, TAN Xiaoshi, LIN Ming, CHENG Junjie, XIANG Keqi, DING Shuxin. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035 [J]. Integrated Intelligent Energy, 2024, 46(3): 72-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||