Integrated Intelligent Energy ›› 2025, Vol. 47 ›› Issue (10): 60-68.doi: 10.3969/j.issn.2097-0706.2025.10.007
• New Energy and Energy Storage System Optimization • Previous Articles Next Articles
HUANG Ziqi(
), WU Zhicong(
), XU Gang*(
), GE Shiyu(
), CHEN Heng(
)
Received:2024-10-23
Revised:2024-12-16
Published:2025-05-28
Contact:
XU Gang
E-mail:19030821131@163.com;wuzc_ncepu@163.com;xgncepu@163.com;GSY_Ncepu@163.com;heng@ncepu.edu.cn
Supported by:CLC Number:
HUANG Ziqi, WU Zhicong, XU Gang, GE Shiyu, CHEN Heng. Optimization analysis of a cogeneration system based on methanol synthesis and gas turbine combined cycle[J]. Integrated Intelligent Energy, 2025, 47(10): 60-68.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2025.10.007
Table 7
Exergy analysis of different systems
| 项目 | 甲醇合成系统 | 甲醇合成集成GTCC优化系统 | 变化量 |
|---|---|---|---|
| 氢气输入㶲/MW | 669.59 | 669.59 | 0 |
| 电能输入㶲/MW | 11.33 | 12.84 | 1.51 |
| 小计/MW | 680.92 | 682.43 | 1.51 |
| 甲醇输出㶲/MW | 594.32 | 594.32 | 0 |
| GTCC发电功率增量/MW | 0 | 26.30 | 26.30 |
| 小计/MW | 594.32 | 620.61 | 26.30 |
| 驰放气㶲损/MW | 29.82 | 0 | -29.82 |
| 甲醇合成器㶲损/MW | 39.72 | 39.72 | 0 |
| 压缩机㶲损/MW | 2.38 | 2.47 | 0.09 |
| 精馏塔㶲损/MW | 9.37 | 9.37 | 0 |
| 换热器㶲损/MW | 15.28 | 6.45 | -8.83 |
| GTCC㶲损/MW | 0 | 40.95 | 40.95 |
| 废热㶲损/MW | 22.17 | 14.03 | -8.14 |
| 小计/MW | 161.81 | 158.72 | -6.87 |
| 㶲效率/% | 87.28 | 90.94 | 3.66 |
| [1] | 肖先勇, 郑子萱. “双碳” 目标下新能源为主体的新型电力系统: 贡献、关键技术与挑战[J]. 工程科学与技术, 2022, 54(1): 47-59. |
| XIAO Xianyong, ZHENG Zixuan. New power systems dominated by renewable energy towards the goal of emission peak and carbon neutrality: Contribution, key techniques, and challenges[J]. Advanced Engineering Sciences, 2022, 54(1): 47-59. | |
| [2] |
赵国涛, 钱国明, 孙艳兵, 等. 碳逸会计在综合能源系统低碳性评价中的应用[J]. 综合智慧能源, 2023, 45(6): 73-80.
doi: 10.3969/j.issn.2097-0706.2023.06.010 |
|
ZHAO Guotao, QIAN Guoming, SUN Yanbing, et al. Application of carbon-escape accounting system in integrated energy systems' low-carbon evaluation[J]. Integrated Intelligent Energy, 2023, 45(6): 73-80.
doi: 10.3969/j.issn.2097-0706.2023.06.010 |
|
| [3] | 王玉亭, 张钟, 张淇钧, 等. 基于电解水制氢和生物质电厂的电与甲醇联产系统[J]. 科技和产业, 2022, 22(5): 288-294. |
| WANG Yuting, ZHANG Zhong, ZHANG Qijun, et al. Electricity and methanol co-production system based on hydrogen production by electrolysis of water and biomass power plants[J]. Science Technology and Industry, 2022, 22(5): 288-294. | |
| [4] |
江婷, 赵雅姣. 基于燃气分布式的综合能源系统碳减排分析[J]. 综合智慧能源, 2022, 44(9): 27-32.
doi: 10.3969/j.issn.2097-0706.2022.09.004 |
|
JIANG Ting, ZHAO Yajiao. Carbon emission reduction analysis for gas-based distributed integrated energy systems[J]. Integrated Intelligent Energy, 2022, 44(9): 27-32.
doi: 10.3969/j.issn.2097-0706.2022.09.004 |
|
| [5] | HERDEM M S, SINAKI M Y, FARHAD S, et al. An overview of the methanol reforming process: Comparison of fuels, catalysts, reformers, and systems[J]. International Journal of Energy Research, 2019, 43(10): 5076-5105. |
| [6] | ZHAO S, SUN Z Q. Hydrogen generation from methanol reforming for fuel cell applications: A review[J]. Journal of Central South University, 2020, 27(4): 1074-1103. |
| [7] | ABDIN Z, TANG C G, LIU Y, et al. Large-scale stationary hydrogen storage via liquid organic hydrogen carriers[J]. iScience, 2021, 24(9): 102966. |
| [8] | ZHAO Y J, LIU Q, DUAN Y Y, et al. A multi-dimensional feasibility analysis of coal to methanol assisted by green hydrogen from a life cycle viewpoint[J]. Energy Conversion and Management, 2022, 268: 115992. |
| [9] |
李贵贤, 曹阿波, 孟文亮, 等. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009.
doi: 10.11949/0438-1157.20230519 |
| LI Guixian, CAO Abo, MENG Wenliang, et al. Process design and evaluation of CO2 to methanol coupled with SOEC[J]. CIESC Journal, 2023, 74(7): 2999-3009. | |
| [10] | WANG D L, MENG W L, ZHOU H R, et al. Green hydrogen coupling with CO2 utilization of coal-to-methanol for high methanol productivity and low CO2 emission[J]. Energy, 2021, 231: 120970. |
| [11] | SAFDER U, LOY-BENITEZ J, YOO C K. Techno-economic assessment of a novel integrated multigeneration system to synthesize e-methanol and green hydrogen in a carbon-neutral context[J]. Energy, 2024, 290: 130104. |
| [12] | PARIGI D, GIGLIO E, SOTO A, et al. Power-to-fuels through carbon dioxide re-utilization and high-temperature electrolysis: A technical and economical comparison between synthetic methanol and methane[J]. Journal of Cleaner Production, 2019, 226: 679-691. |
| [13] | WU Z, XU G, ZHANG W T, et al. Thermodynamic and economic analysis of a new methanol steam reforming system integrated with CO2 heat pump and cryogenic separation system[J]. Energy, 2023, 283: 128501. |
| [14] | NAZERIFARD R, KHANI L, MOHAMMADPOURFARD M, et al. Design and thermodynamic analysis of a novel methanol, hydrogen, and power trigeneration system based on renewable energy and flue gas carbon dioxide[J]. Energy Conversion and Management, 2021, 233: 113922. |
| [15] | XIN T T, XU C, LIU Y H, et al. Thermodynamic analysis of a novel zero carbon emission coal-based polygeneration system incorporating methanol synthesis and allam power cycle[J]. Energy Conversion and Management, 2021, 244: 114441. |
| [16] | GE Website. H-class gas turbines[EB/OL]. (2023-08-09)[2024-10-20]. https://www.ge.com/gas-power/products/gas-turbines/h-class-gas-turbines. |
| [17] | WU Z C, XU G, GE S Y, et al. An efficient methanol pre-reforming gas turbine combined cycle with integration of mid-temperature energy upgradation and CO2 recovery: Thermodynamic and economic analysis[J]. Applied Energy, 2024, 358: 122599. |
| [18] | ZARE AAD, YARI M, NAMI H, et al. Low-carbon hydrogen, power and heat production based on steam methane reforming and chemical looping combustion[J]. Energy Conversion and Management, 2023, 279: 116752. |
| [19] | GU Y, WANG D F, CHEN Q Q, et al. Techno-economic analysis of green methanol plant with optimal design of renewable hydrogen production: A case study in China[J]. International Journal of Hydrogen Energy, 2022, 47(8): 5085-5100. |
| [20] | SHEN Z W, QU Q P, CHEN M L, et al. Advancements in methanol distillation system: A comprehensive overview[J]. Chemical Engineering Research and Design, 2023, 199: 130-151. |
| [21] | DALENA F, SENATORE A, MARINO A, et al. Methanol production and applications: An overview[J]. Methanol,2018:3-28. |
| [22] | 赵杨, 沙立成, 雷一鸣, 等. 北京电网燃气-蒸汽联合循环机组调峰运行特性[J]. 华北电力技术, 2015(2): 60-65. |
| ZHAO Yang, SHA Licheng, LEI Yiming, et al. Analysis on peak load regulation characteristics of the gas-steam combined cycle units in Beijing grid[J]. North China Electric Power, 2015(2): 60-65. | |
| [23] | HUANG H, YANG S Y, CUI P Z. Design concept for coal-based polygeneration processes of chemicals and power with the lowest energy consumption for CO2 capture[J]. Energy Conversion and Management, 2018, 157: 186-194. |
| [24] | 张世红, 何林, 孙威. 天然气催化燃烧理论和应用[J]. 化工进展, 2009, 28(S1): 115-117. |
| ZHANG Shihong, HE Lin, SUN Wei. Theory and application of catalytic combustion of natural gas[J]. Chemical Industry and Engineering Progress, 2009, 28(S1): 115-117. | |
| [25] | AGAHZAMIN S, MIRVAKILI A, RAHIMPOUR M R. Investigation and recovery of purge gas streams to enhance synthesis gas production in a mega methanol complex[J]. Journal of CO2 Utilization, 2016, 16: 157-168. |
| [26] | WU Z C, ZHANG Z Y, XU G, et al. Thermodynamic and economic analysis of a new methanol synthesis system coupled with a biomass integrated gasification combined cycle[J]. Energy, 2024, 300: 131647. |
| [27] | HAYDARY J. Chemical process design and simulation: Aspen Plus and Aspen Hysys applications[M]. John Wiley and Sons, 2019. |
| [28] | 王琳琳. 基于Aspen Plus对甲醇合成过程的模拟研究[D]. 呼和浩特: 内蒙古大学, 2017. |
| WANG Linlin. Simulation of methanol synthesis process based on aspen plus[D]. Hohhot: Inner Mongolia University, 2017. | |
| [29] |
徐钢, 张钟, 吴志聪, 等. 基于绿氢和生物质富氧燃烧技术的零碳甲醇合成系统[J]. 动力工程学报, 2022, 42(10): 925-932.
doi: 10.19805/j.cnkij.cspe.2022.10.006 |
|
XU Gang, ZHANG Zhong, WU Zhicong, et al. Zero carbon methanol synthesis system based on green hydrogen and biomass oxygen enriched combustion technology[J]. Journal of Chinese Society of Power Engineering, 2022, 42(10): 925-932.
doi: 10.19805/j.cnkij.cspe.2022.10.006 |
|
| [30] | KOTAS T J. Exergy concepts for thermal plant first of two papers on exergy techniques in thermal plant analysis[J]. International Journal of Heat and Fluid Flow, 1980, 2(3): 105-114. |
| [31] | ISHIDA M, KAWAMURA K. Energy and exergy analysis of a chemical process system with distributed parameters based on the enthalpy-direction factor diagram[J]. Industrial and Engineering Chemistry Process Design and Development, 1982, 21(4): 690-695. |
| [32] | JIN H G, ISHIDA M. A novel gas turbine cycle with hydrogen-fueled chemical-looping combustion[J]. International Journal of Hydrogen Energy, 2000, 25(12): 1209-1215. |
| [1] | NIE Xueying, CHENG Maosong, ZUO Xiandi, DAI Zhimin. Capacity optimization of wind-solar-nuclear-energy storage hybrid system considering wind and solar energy consumption [J]. Integrated Intelligent Energy, 2025, 47(1): 51-61. |
| [2] | YE Fei, ZHONG Xiaojing, GUAN Qianfeng. Research on network attack modeling, evolution and response cost of power cyber physical systems [J]. Integrated Intelligent Energy, 2024, 46(5): 58-64. |
| [3] | LI Yimin, DONG Haiying, DING Kun, WANG Jinyan. Multi-stage optimal allocation of energy storage considering long-term load probability prediction [J]. Integrated Intelligent Energy, 2024, 46(2): 19-27. |
| [4] | HUANG Yinheng, LI Meng, PANG Yi, LIANG Yin, JIN Zengfeng, WANG Jinzhu. Research on optimization method for capacity allocation and scheduling strategy of regional integrated energy systems [J]. Integrated Intelligent Energy, 2023, 45(6): 34-41. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||

