Integrated Intelligent Energy ›› 2025, Vol. 47 ›› Issue (12): 34-45.doi: 10.3969/j.issn.2097-0706.2025.12.004
• Energy Storage and Multi-energy Coupling • Previous Articles Next Articles
WANG Qianrui1(
), RUAN Jingxin2, WANG Yueshe1,*(
)
Received:2025-05-15
Revised:2025-07-22
Published:2025-12-25
Contact:
WANG Yueshe
E-mail:1542110966@qq.com;wangys@mail.xjtu.edu.cn
Supported by:CLC Number:
WANG Qianrui, RUAN Jingxin, WANG Yueshe. Economic optimal scheduling of electricity-hydrogen coordinated energy storage system considering spatiotemporal correlation of wind and photovoltaic power outputs[J]. Integrated Intelligent Energy, 2025, 47(12): 34-45.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2025.12.004
Table 1
Rank correlation coefficients and Euclidean distances of different Copula models
| Copula函数 | 秩相关系数 | 欧氏距离 | |
|---|---|---|---|
| Spearman | Kendall | ||
| 正态Copula | 0.047 2 | 0.031 5 | 116.260 4 |
| t-Copula | 0.061 7 | 0.041 3 | 84.598 0 |
| Frank-Copula | 0.035 7 | 0.023 8 | 81.085 5 |
| Gumbel-Copula | 0.035 6 | 0.023 6 | 11.228 4 |
| Clayton-Copula | 0.190 7 | 0.128 0 | 24.261 6 |
| 样本数据 | 0.031 4 | 0.023 0 | |
Table 6
Copula functions and their fitting parameters for joint distribution models of wind and PV power outputs in each period
| 时段 | Copula函数 | 拟合参数 | 时段 | Copula函数 | 拟合参数 |
|---|---|---|---|---|---|
| 5 | Gumbel | 3.027 6 | 13 | Frank | 3.039 4 |
| 6 | Gumbel | 2.009 8 | 14 | Frank | 4.365 9 |
| 7 | Gumbel | 1.440 6 | 15 | Frank | 5.620 1 |
| 8 | Gumbel | 1.353 3 | 16 | Frank | 6.279 9 |
| 9 | Gumbel | 1.272 6 | 17 | Gumbel | 2.230 7 |
| 10 | Gumbel | 1.308 7 | 18 | Gumbel | 2.010 4 |
| 11 | Gumbel | 1.363 3 | 19 | Gumbel | 1.783 8 |
| 12 | Frank | 2.155 5 |
| [1] |
许传博, 刘建国. 氢储能在我国新型电力系统中的应用价值、挑战及展望[J]. 中国工程科学, 2022, 24(3): 89-99.
doi: 10.15302/J-SSCAE-2022.03.010 |
|
XU Chuanbo, LIU Jianguo. Hydrogen energy storage in China's new-type power system: Application value, challenges, and prospects[J]. Strategic Study of CAE, 2022, 24(3): 89-99.
doi: 10.15302/J-SSCAE-2022.03.010 |
|
| [2] |
韩世旺, 赵颖, 张兴宇, 等. 面向碳中和的新型电力系统氢储能调峰技术研究[J]. 综合智慧能源, 2022, 44(9): 20-26.
doi: 10.3969/j.issn.2097-0706.2022.09.003 |
|
HAN Shiwang, ZHAO Ying, ZHANG Xingyu, et al. Researches on hydrogen storage peak-shaving technology for new power systems to achieve carbon neutrality[J]. Integrated Intelligent Energy, 2022, 44(9): 20-26.
doi: 10.3969/j.issn.2097-0706.2022.09.003 |
|
| [3] |
GOMES I L R, POUSINHO H M I, MELICIO R, et al. Stochastic coordination of joint wind and photovoltaic systems with energy storage in day-ahead market[J]. Energy, 2017, 124:310-320.
doi: 10.1016/j.energy.2017.02.080 |
| [4] |
CHOI J, EOM H, BAEK S M. A wind power probabilistic model using the reflection method and multi-kernel function kernel density estimation[J]. Energies, 2022, 15(24):9436.
doi: 10.3390/en15249436 |
| [5] |
GUAN J S, LIN J, GUAN J J, et al. A novel probabilistic short-term wind energy forecasting model based on an improved kernel density estimation[J]. International Journal of Hydrogen Energy, 2020, 45(43): 23791-23808.
doi: 10.1016/j.ijhydene.2020.06.209 |
| [6] |
朱怡莹, 周荣生, 罗龙波. 考虑需求响应与光伏不确定性的电力系统经济调度[J]. 太阳能学报, 2023, 44 (1): 62-68.
doi: 10.19912/j.0254-0096.tynxb.2021-0844 |
|
ZHU Yiying, ZHOU Rongsheng, LUO Longbo. Economic dispatch of power system considering demand response and pv uncertainty[J]. Acta Energiae Solaris Sinica, 2023, 44 (1): 62-68.
doi: 10.19912/j.0254-0096.tynxb.2021-0844 |
|
| [7] |
MAISAM W, BARAA M, EL-FOULY T H M, et al. Unbiased cross-validation kernel density estimation for wind and PV probabilistic modelling[J]. Energy Conversion and Management, 2022, 266:115811.
doi: 10.1016/j.enconman.2022.115811 |
| [8] |
LI Y, ZOU Y, TAN Y, et al. Optimal stochastic operation of integrated low-carbon electric power, natural gas, and heat delivery system[J]. IEEE Transactions on Sustainable Energy, 2018, 9(1): 273-283.
doi: 10.1109/TSTE.2017.2728098 |
| [9] | 高圣溥. 面向电力系统规划的风光出力序列生成和场景缩减方法[D]. 重庆: 重庆大学, 2021. |
| GAO Shengpu. Wind/photovoltaic power time series generation and scenarios reduction methods for power system planning[D]. Chongqing: Chongqing University, 2021. | |
| [10] |
WANG Z, WANG W S, LIU C, et al. Probabilistic forecast for multiple wind farms based on regular vine Copulas[J]. IEEE Transactions on Power Systems, 2018, 33(1): 578-589.
doi: 10.1109/TPWRS.2017.2690297 |
| [11] | PAN Y, SHI L B, NI Y X. Modelling of multiple wind farms output correlation based on Copula theory[J]. The Journal of Engineering, 2017, 13:2303-2308. |
| [12] |
XIE Z Q, JI T Y, LI M S, et al. Quasi-Monte Carlo based probabilistic optimal power flow considering the correlation of wind speeds using Copula function[J]. IEEE Transactions on Power Systems, 2018, 33(2): 2239-2247.
doi: 10.1109/TPWRS.2017.2737580 |
| [13] |
SUN C, BIE Z H, XIE M, et al. Fuzzy Copula model for wind speed correlation and its application in wind curtailment evaluation[J]. Renewable Energy, 2016, 93: 68-76.
doi: 10.1016/j.renene.2016.02.049 |
| [14] | 朱晓荣, 金绘民, 王羽凝. 基于混合高斯模型与Copula函数结合的光伏电站功率相依结构建模[J]. 太阳能学报, 2019, 48(7): 1912-1919. |
| ZHU Xiaorong, JIN Huimin, WANG Yuning. Analysis on dependence structure among photovoltaic power outputs based on combination of Copula function and Gaussian mixture model[J]. Acta Energiae Solaris Sinica, 2019, 48(7): 1912-1919. | |
| [15] |
SCHMIDT J, CANCELLA R, PEREIRA O A. The role of wind power and solar PV in reducing risks in the Brazilian hydro-thermal power system[J]. Energy, 2016, 115:1748-1757.
doi: 10.1016/j.energy.2016.03.059 |
| [16] | 钟嘉庆, 李茂林, 江静, 等. 基于Copula理论的风/光出力预测误差分析方法的研究[J]. 电工电能新技术, 2017, 36(6): 39-46. |
| ZHONG Jiaqing, LI Maolin, JIANG Jing, et al. Method of wind/solar output forecast error analysis based on Copula theory[J]. Advanced Technology of Electrical Engineering and Energy, 2017, 36(6): 39-46. | |
| [17] |
GAO J W, YANG Y, GAO F J, et al. Optimization of electric vehicles based on Frank-Copula-GlueCVaR combined wind and photovoltaic output scheduling research[J]. Energies, 2021, 14(19):6080.
doi: 10.3390/en14196080 |
| [18] |
HAN Q K, CHU F L. Directional wind energy assessment of China based on nonparametric Copula models:ScienceDirect[J]. Renewable Energy, 2020, 164:1334-1349.
doi: 10.1016/j.renene.2020.10.149 |
| [19] |
ZHENG W D, ZHANG M, LI Y X, et al. Optimal dispatch for reversible solid oxide cell-based hydrogen/electric vehicle aggregator via stimuli-responsive charging decision estimation[J]. International Journal of Hydrogen Energy, 2022, 47(13): 8502-8513.
doi: 10.1016/j.ijhydene.2021.12.157 |
| [20] | 任宇路, 程昱舒, 张雪瑞, 等. 碳交易下含氢储能的综合能源系统运行优化[J/OL]. 电测与仪表, 2024: 1-9 (2024-06-21)[2025-05-10]. https://link.cnki.net/urlid/23.1202.th.20240621.1203.004. |
| REN Yulu, CHENG Yushu, ZHANG Xuerui, et al. Operation optimization of integrated energy system with hydrogen storageunder carbon trading[J/OL]. Electrical Measurement & Instrumentation, 2024:1-9(2024-06-21)[2025-05-10]. https://link.cnki.net/urlid/23.1202.th.2024 | |
| [21] |
VISHNU S, PRZEMYSLAW J, MICHAL J, et al. Microgrid energy management using metaheuristic optimization algorithms[J]. Applied Soft Computing, 2023, 134: 109981.
doi: 10.1016/j.asoc.2022.109981 |
| [22] |
SULAIMAN A A, ALROBAIAN A A. Optimization of combined heat and power systems by meta-heuristic algorithms: An overview[J]. Energies, 2022, 15(16):5977.
doi: 10.3390/en15165977 |
| [23] |
ELLAHI M, ABBAS G. A hybrid metaheuristic approach for the solution of renewables-incorporated economic dispatch problems[J]. IEEE Access, 2020, 8:127608-127621.
doi: 10.1109/Access.6287639 |
| [24] |
ASHTARI B, ALIZADEH BIDGOLI M, BABAEI M, et al. A two-stage energy management framework for optimal scheduling of multi-microgrids with generation and demand forecasting[J]. Neural Computing and Applications, 2022, 34(14):12159-12173.
doi: 10.1007/s00521-022-07103-w |
| [25] |
XU X Y, YAN Z, XU S L. Estimating wind speed probability distribution by diffusion-based kernel density method[J]. Electric Power Systems Research, 2015, 121:28-37.
doi: 10.1016/j.epsr.2014.11.029 |
| [26] |
王海鸣, 张润之, 周家辉, 等. 离网式风光互补制氢合成绿氨系统容量配置优化分析[J]. 综合智慧能源, 2024, 46(11): 73-82.
doi: 10.3969/j.issn.2097-0706.2024.11.009 |
|
WANG Haiming, ZHANG Runzhi, ZHOU Jiahui, et al. Optimal capacity configuration of off-grid wind-solar hybrid hydrogen production and green ammonia synthesis system[J]. Integrated Intelligent Energy, 2024, 46(11): 73-82.
doi: 10.3969/j.issn.2097-0706.2024.11.009 |
|
| [27] | 宋宇, 李涵, 楚皓翔, 等. 计及可靠性的风光互补发电系统容量优化配比研究[J]. 电气技术, 2022(6): 49-58. |
| SONG Yu, LI Han, CHU Haoxiang, et al. Optimal proportion study of wind-solar hybrid generation system considering reliability[J]. Electrical Engineering, 2022(6): 49-58. | |
| [28] |
张元曦, 杨国华, 杨娜, 等. 基于K-means聚类的LSTM-SVR-DE光伏功率组合预测[J]. 综合智慧能源, 2025, 47(2): 71-78.
doi: 10.3969/j.issn.2097-0706.2025.02.007 |
|
ZHANG Yuanxi, YANG Guohua, YANG Na, et al. Photovoltaic power prediction based on K-means clustering and the LSTM-SVR-DE model[J]. Integrated Intelligent Energy, 2025, 47(2): 71-78.
doi: 10.3969/j.issn.2097-0706.2025.02.007 |
|
| [29] | 闫群民, 马瑞卿, 马永翔, 等. 一种自适应模拟退火粒子群优化算法[J]. 西安电子科技大学学报, 2021, 48(4): 120-127. |
| YAN Qunmin, MA Ruiqing, MA Yongxiang, et al. Adaptive simulated annealing particle swarm optimization algorithm[J]. Journal of Xidian University, 2021, 48(4): 120-127. |
| [1] | HONG Liu, LYU Daoxin, YANG Zhongtao, MA Shaowu, JIANG Xue. Linearized calculation method of critical inertia in energy power systems with renewable energy and its application [J]. Integrated Intelligent Energy, 2025, 47(9): 10-17. |
| [2] | DOU Xiang, LI Zhuoqun, ZHANG Zhe, WEN Xin, ZHAO Bo, HAN Yan, ZHONG Sheng. Load forecasting for integrated energy systems based on CNN-BiLSTM-RF-KDE [J]. Integrated Intelligent Energy, 2025, 47(9): 60-70. |
| [3] | ZHANG Yuanxi, YANG Guohua, MA Longteng, MA Xin, LIU Yaoze. Optimized wind-solar-storage configuration of industrial park microgrids based on improved differential evolution algorithm [J]. Integrated Intelligent Energy, 2025, 47(9): 71-79. |
| [4] | ZHOU Kai, WU Yanxi, HUANG Yuxiang, YANG Jinghao, FAN Xiaochao, LI Jianwei, WEI Zhizong, TENG Jian, CHEN Li, YE Qin, ZHANG Hao, JIANG Junnan. Large-scale gravity energy storage technology for solid flow in areas with large altitude differences [J]. Integrated Intelligent Energy, 2025, 47(8): 1-9. |
| [5] | ZHEN Wenxi, MA Xiping, DAI Yuehong, NIU Wei, CHEN Baixu, ZENG Gui. Research on wind-storage self-synchronizing frequency regulation strategy based on intermediate layer control [J]. Integrated Intelligent Energy, 2025, 47(8): 21-29. |
| [6] | CHU Longhao, LI Xiaozhu. Bidding strategies and value allocation mechanism for multi-type electric energy trading with participation of shared energy storage [J]. Integrated Intelligent Energy, 2025, 47(8): 30-39. |
| [7] | ZHAI Shuo, ZHANG Zhiyuan, WANG Weisheng, TIAN Runduo, ZHANG Weizhi, WANG Rui. Vehicle-vehicle energy mutual aid control strategy for electric vehicles [J]. Integrated Intelligent Energy, 2025, 47(8): 40-48. |
| [8] | TAN Jiaqun, LYU Ruxuan, JU Hongjin, HONG Chunxue, XIAO Haiping, LEI Jing, HAN Zhenxing. Research on optimal scheduling strategy of wind-photovoltaic-thermal-storage integrated energy system based on IBES [J]. Integrated Intelligent Energy, 2025, 47(8): 68-76. |
| [9] | ZHENG Haoyu, ZHOU Jiahui, TONG Bin, WANG Haiming, XU Gang, ZHANG Ziyue. Research on capacity allocation and operation scheduling optimization of green hydrogen system with compressed air energy storage [J]. Integrated Intelligent Energy, 2025, 47(7): 64-70. |
| [10] | ZHANG Debin, LIN Wenye, HE Zixuan, YUE Xinru, SONG Wenji, FENG Ziping, FARID Mohammed Mehdi, USHAK DE GRAGEDA Svetlana Nikolaevna. Day-ahead dispatch optimization for integrated energy system in building prosumer community using generalized energy storage [J]. Integrated Intelligent Energy, 2025, 47(7): 82-92. |
| [11] | LI Xiaoning, SUN Na, HUANG Amin, DONG Haiying. Fuzzy active disturbance rejection control of PEMFC air intake unit based on snake optimization algorithm [J]. Integrated Intelligent Energy, 2025, 47(6): 57-73. |
| [12] | WANG Cheng, SHAO Chong, HE Xin, DONG Haiying. Optimal power allocation for electrochemical energy storage power stations based on MOIBKA algorithm [J]. Integrated Intelligent Energy, 2025, 47(6): 74-84. |
| [13] | YE Xing, QIU Chen, AI Lin, XIN Songxu, GUO Yanheng. Connection mechanism between green certificates and carbon trading mechanism under the "double carbon" target [J]. Integrated Intelligent Energy, 2025, 47(5): 12-20. |
| [14] | CHEN Hao, MA Gang, QIAN Da, MA Jian, PENG Leyao. Optimization of regional integrated energy systems under green certificate and carbon trading mechanism considering tiered demand response [J]. Integrated Intelligent Energy, 2025, 47(5): 21-30. |
| [15] | ZHANG Wenbo, QIN Wenping, LIU Jiaxin, CHEN Yumei, LIU Boyang, ZHAO Anting. Robust optimization scheduling strategy for virtual power plants considering demand response and leasing shared energy storage under the green certificate-electricity- carbon coupled market [J]. Integrated Intelligent Energy, 2025, 47(5): 31-40. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||

