Integrated Intelligent Energy ›› 2025, Vol. 47 ›› Issue (8): 1-9.doi: 10.3969/j.issn.2097-0706.2025.08.001
• Multi-dimensional Energy Storage Technology • Next Articles
					
													ZHOU Kai1( ), WU Yanxi2, HUANG Yuxiang1, YANG Jinghao1, FAN Xiaochao1,*(
), WU Yanxi2, HUANG Yuxiang1, YANG Jinghao1, FAN Xiaochao1,*( ), LI Jianwei3, WEI Zhizong3, TENG Jian3, CHEN Li3, YE Qin3, ZHANG Hao3, JIANG Junnan2
), LI Jianwei3, WEI Zhizong3, TENG Jian3, CHEN Li3, YE Qin3, ZHANG Hao3, JIANG Junnan2
												  
						
						
						
					
				
Received:2024-10-10
															
							
																	Revised:2024-10-23
															
							
															
							
							
																	Published:2024-12-20
															
						Contact:
								FAN Xiaochao   
																	E-mail:1505548230@qq.com;297546366@qq.com
																					Supported by:CLC Number:
ZHOU Kai, WU Yanxi, HUANG Yuxiang, YANG Jinghao, FAN Xiaochao, LI Jianwei, WEI Zhizong, TENG Jian, CHEN Li, YE Qin, ZHANG Hao, JIANG Junnan. Large-scale gravity energy storage technology for solid flow in areas with large altitude differences[J]. Integrated Intelligent Energy, 2025, 47(8): 1-9.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2025.08.001
 
													
													Table 1
Performance of various gravity energy storage technologies
| 重力储能技术 | P/MW | h/m | 单通道运输量/ (t·h-1) | (P/h)/(kW·m-1) | 元件能量密度/[(kW·h)·t-1] | η/% | 性能指数 | 
|---|---|---|---|---|---|---|---|
| 固体流重力储能 | 300~6 000 | 600~3 000 | 约720 000 | 500~2 000 | 1.63~8.17 | ≥75 | 600~12 000 | 
| 抽水蓄能 | 300~1 200 | 300~800 | 约500 000 | 约1 000 | 0.82~2.18 | 70~80 | 500~1 600 | 
| 斜坡牵引式重力储能 | ≤2 | 200 | 3 600 | ≤10 | 0.54 | 80~85 | ≤5 | 
| 斜坡缆轨式重力储能 | ≤5 | 500 | 3 600 | ≤10 | 1.36 | 80 | 12 | 
| 竖井提升式重力储能 | ≤3 | 600 | 1 800 | 5 | 1.63 | 80~85 | ≤7 | 
| EVx框架式重力储能 | 0.25 | 125 | 1 000 | 2 | 0.33 | ≥80 | ≤0.55 | 
 
													
													Table 4
Relationship between different altitude differences and power costs
| 成本 | h/m | ||||
|---|---|---|---|---|---|
| 600 | 1 200 | 2 600 | 3 000 | ||
| CY,T/(元·kW-1) | 591.54 | ||||
| CY,V/(元·kW-1) | 805.28 | 402.64 | 185.83 | 161.06 | |
| CY/(元·kW-1) | 1 396.82 | 994.18 | 777.37 | 752.60 | |
| 年均折旧成本/(元·kW-1) | 45.56 | 33.14 | 25.91 | 25.09 | |
| CY,net/(元·kW-1) | 111.75 | 79.53 | 62.19 | 60.21 | |
| CY,total/(元·kW-1) | 157.31 | 112.67 | 88.10 | 85.30 | |
| 单位发电成本/ [元·(kW·h)-1] | tcha=1 600 | 0.098 3 | 0.070 5 | 0.055 1 | 0.053 1 | 
| tcha=1 000 | 0.157 3 | 0.112 7 | 0.088 1 | 0.085 0 | |
 
													
													Table 5
Relationship between different altitude differences and energy costs
| 项目 | h/m | |||
|---|---|---|---|---|
| 600 | 1 200 | 2 600 | 3 000 | |
| Ck/[元·(kW·h)-1] | 133.33 | 66.67 | 30.77 | 26.67 | 
| 48.00 | 24.00 | 11.08 | 9.60 | |
| CE/[元·(kW·h)-1] | 181.33 | 90.67 | 41.85 | 36.27 | 
| 年均折旧成本/(元·kW-1) | 6.04 | 3.22 | 1.40 | 1.21 | 
| CE,net/(元·kW-1) | 14.51 | 7.25 | 3.35 | 2.9 | 
| CE,total/(元·kW-1) | 20.55 | 10.47 | 4.75 | 4.11 | 
| 能量发电成本/ [元·(kW·h)-1] | 0.062 3 | 0.032 0 | 0.014 4 | 0.012 5 | 
 
													
													Table 6
Comparison of pumped storage and solid flow gravity energy storage technologies
| 项目 | 抽水蓄能 | 固体流重力储能 | 
|---|---|---|
| 装机容量/MW | 1 200 | 1 500 | 
| 静态投资/万元 | 642 058 | 300 000 | 
| 征用土地/m2 | 3.34×106 | 1 000 | 
| 征占耕地/m2 | 5.14×105 | 西北荒漠耕地、林地零占用,中部、东部耕地零占用,林地酌情 | 
| 征占林地/m2 | 2.46×106 | |
| 拆迁房屋/m2 | 48 126 | |
| 搬迁人口/人 | 998 | |
| 设计年发峰荷电量/(PW·h) | 1.277 | 24.000 | 
| 设计年耗用低谷电量/(PW·h) | 1.703 | 30.000 | 
| 设计年发电小时数 | 1 064 | 1 600 | 
| [1] | 万明忠, 王元媛, 李峻, 等. 压缩空气储能技术研究进展及未来展望[J]. 综合智慧能源, 2023, 45(9): 26-31. doi: 10.3969/j.issn.2097-0706.2023.09.004 | 
| WAN Mingzhong, WANG Yuanyuan, LI Jun, et al. Research progress and prospect of compressed air energy storage technology[J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. doi: 10.3969/j.issn.2097-0706.2023.09.004 | |
| [2] | TONG W, LU Z, HUNT J D, et al. Energy management system for modular-gravity energy storage plant[J]. Journal of Energy Storage, 2023, 74: 109283. | 
| [3] | 童家麟, 洪庆, 吕洪坤, 等. 电源侧储能技术发展现状及应用前景综述[J]. 华电技术, 2021, 43(7): 17-23. | 
| TONG Jialin, HONG Qing, LYU Hongkun, et al. Development status and application prospect of power side energy storage technology[J]. Huadian Technology, 2021, 43(7): 17-23. | |
| [4] | 朱文韬, 周杨, 徐艺敏, 等. 电池储能技术在新能源发电系统中的应用与优化[J]. 储能科学与技术, 2024, 13(8): 2737-2739. doi: 10.19799/j.cnki.2095-4239.2024.0690 | 
| ZHU Wentao, ZHOU Yang, XU Yimin, et al. Application and optimization of battery energy storage technology in new energy generation system[J]. Energy Storage Science and Technology, 2024, 13(8): 2737-2739. doi: 10.19799/j.cnki.2095-4239.2024.0690 | |
| [5] | 薛福, 马晓明, 游焰军. 储能技术类型及其应用发展综述[J]. 综合智慧能源, 2023, 45(9): 48-58. doi: 10.3969/j.issn.2097-0706.2023.09.007 | 
| XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development[J]. Integrated Intelligent Energy, 2023, 45(9): 48-58. doi: 10.3969/j.issn.2097-0706.2023.09.007 | |
| [6] | 刘伟, 李振明, 刘铭扬, 等. 高温相变储热材料制备与应用研究进展[J]. 储能科学与技术, 2023, 12(2):398-430. doi: 10.19799/j.cnki.2095-4239.2022.0521 | 
| LIU Wei, LI Zhenming, LIU Mingyang, et al. Review of high-temperature phase change heat storage material preparation and applications[J]. Energy Storage Science and Technology, 2023, 12(2): 398-430. doi: 10.19799/j.cnki.2095-4239.2022.0521 | |
| [7] | 蒋文坤, 韩颖慧, 薛智文, 等. 多能互补能源系统中储能原理及其应用[J]. 综合智慧能源, 2022, 44(1): 63-71. doi: 10.3969/j.issn.2097-0706.2022.01.009 | 
| JIANG Wenkun, HAN Yinghui, XUE Zhiwen, et al. Energy storage technologies and their applications in multi-energy complementary power system[J]. Integrated Intelligent Energy, 2022, 44(1): 63-71. doi: 10.3969/j.issn.2097-0706.2022.01.009 | |
| [8] | 李佳玉, 魏乐, 房方, 等. 飞轮储能控制技术及其在新型电力系统中的应用[J]. 中国科学: 技术科学, 2024, 54(6):1003-1020. | 
| LI Jiayu, WEI Le, FANG Fang, et al. Control techniques of flywheel energy storage and its application in new power system[J]. Scientia Sinica (Technologica), 2024, 54(6): 1003-1020. | |
| [9] | YANG Q G, LIU Q J, FU Q, et al. Smart microgrid construction in abandoned mines based on gravity energy storage[J]. Heliyon, 2023, 9(11):21481. | 
| [10] | 李昌陵, 常喜强, 卢浩, 等. 新疆地区抽水蓄能电站疏导策略与电价测算研究[J/OL]. 发电技术:1-7(2024-09-18)[2024-10-08].https://kns.cnki.net/kcms/detail/33.1405.TK.20240918.1021.002.html. | 
| LI Changling, CHANG Xiqiang, LU Hao, et al. Research on the diversion strategy and electricity price calculation of pumped storage power stations in Xinjiang region[J/OL]. Power Generation Technology:1-7(2024-09-18)[2024-10-08].https://kns.cnki.net/kcms/detail/33.1405.TK.20240918.1021.002.html. | |
| [11] | TONG W, LU Z, SUN J, et al. Solid gravity energy storage technology: Classification and comparison[J]. Energy Reports, 2022, 8: 926-934. | 
| [12] | 陈云良, 刘旻, 凡家异, 等. 重力储能发电现状、技术构想及关键问题[J]. 工程科学与技术, 2022, 54(1):97-105. | 
| CHEN Yunliang, LIU Min, FAN Jiayi, et al. Present situation, technology conceptualization and key problem for gravity energy storage[J]. Advanced Engineering Sciences, 2022, 54(1): 97-105. | |
| [13] | 张京业, 林玉鑫, 邱清泉, 等. 基于斜坡和山体的重力储能技术研究进展[J]. 储能科学与技术, 2024, 13(3):924-933. doi: 10.19799/j.cnki.2095-4239.2023.0667 | 
| ZHANG Jingye, LIN Yuxin, QIU Qingquan, et al. Gravity energy storage technology based on slopes and mountains[J]. Energy Storage Science and Technology, 2024, 13(3): 924-933. doi: 10.19799/j.cnki.2095-4239.2023.0667 | |
| [14] | 周睿, 洪剑锋, 曹君慈, 等. 竖井式重力储能发电效率及功率稳定策略研究[J]. 储能科学与技术, 2024, 13(10): 3556-3565. doi: 10.19799/j.cnki.2095-4239.2024.0304 | 
| ZHOU Rui, HONG Jianfeng, CAO Junci, et al. Research on power generation efficiency and stabilization strategies for vertical gravity energy storage[J]. Energy Storage Science and Technology, 2024, 13(10): 3556-3565. doi: 10.19799/j.cnki.2095-4239.2024.0304 | |
| [15] | 邱清泉, 罗晓悦, 林玉鑫, 等. 垂直式重力储能系统的研究进展和关键技术[J]. 储能科学与技术, 2024, 13(3): 934-945. doi: 10.19799/j.cnki.2095-4239.2023.0789 | 
| QIU Qingquan, LUO Xiaoyue, LIN Yuxin, et al. Research progress and key technologies in vertical gravity energy storage systems[J]. Energy Storage Science and Technology, 2024, 13(3): 934-945. doi: 10.19799/j.cnki.2095-4239.2023.0789 | |
| [16] | MORSTYN T, CHILCOTT M, MCCULLOCH M D. Gravity energy storage with suspended weights for abandoned mine shafts[J]. Applied Energy, 2019, 239: 201-206. doi: 10.1016/j.apenergy.2019.01.226 | 
| [17] | SHI Q, WANG D, ZENG X, et al. Research on the design of multi-rope friction hoisting system of vertical shaft gravity energy storage system[J]. Applied Sciences, 2024, 14(17): 7556. | 
| [18] | 郑彦春, 陕超伦, 张晋宾. 长持续时间储能体系研究现状及发展展望[J]. 南方能源建设, 2024, 11(2):93-101. | 
| ZHENG Yanchun, SHAN Chaolun, ZHANG Jinbin. Current Research status and development prospects of long duration energy storage system[J]. Southern Energy Construction, 2024, 11(2):93-101. | |
| [19] | LI F F, XIE J Z, FAN Y F, et al. Potential of different forms of gravity energy storage[J]. Sustainable Energy Technologies and Assessments, 2024, 64: 103728. | 
| [20] | KROPOTIN P, PENKOV O, MARCHUK I. On using unstabilized compressed earth blocks as suspended weights in gravity energy storages[J]. Journal of Energy Storage, 2023, 72:108764. | 
| [21] | 吴炎喜. 一种固体重力流运载设备及储能系统:CN202211202805.5[P].2024-10-05. | 
| [22] | 广东省住房和城乡建设厅. 广东省建筑与装饰工程综合定额[M]. 北京: 中国计划出版社, 2010. | 
| [23] | 住房和城乡建设部标准定额研究所. 建设工程施工机械台班费用编制规则[M]. 北京: 中国计划出版社, 2016. | 
| [24] | 喻恒凝, 姚良忠, 程帆, 等. 重力储能在新型电力系统中应用:前景及挑战[J/OL]. 中国电机工程学报:1-16(2024-08-26)[2024-10-08].https://www.cnki.com.cn/Article/CJFDTotal-ZGDC20240823001.htm. | 
| YU Hengning, YAO Liangzhong, CHENG Fan, et al. Application of gravity energy storage in new power systems: Prospects and challenges[J/OL]. Chinese Journal of Electrical Engineering:1-16(2024-08-26)[2024-10-08].https://www.cnki.com.cn/Article/CJFDTotal-ZGDC20240823001.htm. | |
| [25] | TONG W X, LU Z G, ZHAO H S, et al. The structure and control strategies of hybrid solid gravity energy storage system[J]. Journal of Energy Storage, 2023, 67: 107570. | 
| [26] | 林主豪, 张晴, 韩远程, 等. 储能行业主要趋向及未来市场空间[J]. 商业观察, 2022(12): 42-45. | 
| LIN Zhuhao, ZHANG Qing, HAN Yuancheng, et al. Main trends and future market space of energy storage industry[J]. Business Observation, 2022(12): 42-45. | 
| [1] | HONG Chunxue, XIAO Haiping, TAN Jiaqun, LYU Ruxuan, CHEN Yanpeng, JU Xing. Multi-objective optimal schedule of a wind-photovoltaic-thermal-storage energy base considering capacity tariffs [J]. Integrated Intelligent Energy, 2025, 47(7): 1-11. | 
| [2] | CUI Zaiyue, YANG Yang, WANG Lidi. Three-phase unbalance optimization of distribution network considering load demand response [J]. Integrated Intelligent Energy, 2025, 47(3): 92-101. | 
| [3] | SHI Xin, LIU Qiyang, GAO Feng. Application and prospects of deep neural network in new energy systems [J]. Integrated Intelligent Energy, 2025, 47(2): 88-101. | 
| [4] | JING Yubo, ZOU Luyao, JIANG Jiayue, SHA Wenhui, CHEN Jiangtao. Research progress on the coupling of energy storage technology with carbon capture in coal-fired units [J]. Integrated Intelligent Energy, 2024, 46(9): 20-27. | 
| [5] | SONG Jianjun, FU Kun, CHEN Meiqian. Simulation on the gas-solid flows and combustion in a multi-pass circulating fluidized bed based on computational particle fluid dynamics method [J]. Integrated Intelligent Energy, 2024, 46(8): 59-66. | 
| [6] | WANG Zening, LI Wenzhong, LI Donghui, XU Taishan, YU Jun. Construction of the hierarchical autonomous power balance model for software-defined new power systems [J]. Integrated Intelligent Energy, 2024, 46(7): 1-11. | 
| [7] | YIN Linfei, MENG Yujie. Short-term wind power forecasting based on DenseNet convolutional neural networks [J]. Integrated Intelligent Energy, 2024, 46(7): 12-20. | 
| [8] | HE Fangbo, PEI Ligeng, ZHENG Rui, FAN Kangjian, ZHANG Xiaoman, LI Gengfeng. Construction of new power system in Shaanxi Province with the collaboration of source-network-load-storage [J]. Integrated Intelligent Energy, 2024, 46(7): 40-46. | 
| [9] | HUANG Xiaofan, LI Jiarui, LIU Hui, TANG Xiaoping, WANG Ziyao, WANG Tong. Comprehensive benefit analysis on the cascade utilization of a power battery system [J]. Integrated Intelligent Energy, 2024, 46(7): 63-73. | 
| [10] | SU Panpan, WANG Xuetao, XING Lili, LI Haojie, LIU Mengjie. Research progress on preparation of liquid fuels by catalytic pyrolysis of pretreated biomass [J]. Integrated Intelligent Energy, 2024, 46(3): 1-11. | 
| [11] | LI Yimin, DONG Haiying, DING Kun, WANG Jinyan. Multi-stage optimal allocation of energy storage considering long-term load probability prediction [J]. Integrated Intelligent Energy, 2024, 46(2): 19-27. | 
| [12] | XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development [J]. Integrated Intelligent Energy, 2023, 45(9): 48-58. | 
| [13] | YU Haibin, GAO Yiling, LU Zengjie, DONG Shuai, LU Lin, REN Yizhi. Low-carbon economic scheduling of deep peak regulating market with the participation of wind power,thermal power,storage and carbon capture units considering demand response [J]. Integrated Intelligent Energy, 2023, 45(8): 80-89. | 
| [14] | LI Qi, WANG Fangfang, YANG Pengwei, ZHAO Guangjin, LIU Xiaona, MA Shuangchen. Application status and development of energy storage technology in the context of flexibility transformation of thermal power plants [J]. Integrated Intelligent Energy, 2023, 45(3): 66-73. | 
| [15] | MA Zhicheng, LI Weijun, ZHOU Qiang, WANG Dingmei, LYU Qingquan, DONG Haiying. Evaluation on the complementary benefit of a wind-solar combined power generation system with a photothermal power station [J]. Integrated Intelligent Energy, 2023, 45(2): 1-9. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||

