华电技术 ›› 2021, Vol. 43 ›› Issue (7): 68-74.doi: 10.3969/j.issn.1674-1951.2021.07.011
熊亚选1(), 宋超宇1, 药晨华1, 王慧慧1, 王辉祥1, 胡子亮1, 吴玉庭2, 丁玉龙3
收稿日期:
2021-04-27
修回日期:
2021-05-20
出版日期:
2021-07-25
作者简介:
熊亚选(1977—),男,河南新乡人,教授,博士,从事高温熔盐储热技术研究工作(E-mail: xiongyaxuan@bucea.edu.cn)。基金资助:
XIONG Yaxuan1(), SONG Chaoyu1, YAO Chenhua1, WANG Huihui1, WANG Huixiang1, HU Ziliang1, WU Yuting2, DING Yulong3
Received:
2021-04-27
Revised:
2021-05-20
Published:
2021-07-25
摘要:
为实现碳中和、碳达峰目标,需要提高能源转化效率。纳米流体作为一种高效传热工质,在最近20多年受到广泛关注。然而纳米流体稳定性差,在诸多领域的应用中受到限制。为提高纳米流体稳定性,实现大规模应用,通过对关于提高纳米流体稳定性的文献进行汇总分析,提出可通过调节纳米流体的pH值来控制其离子浓度达到合适的值;添加表面活性剂提高纳米颗粒间的排斥力;利用超声技术可以将纳米颗粒团簇分解;利用混合纳米颗粒之间的分子力可以改善纳米流体的稳定性。这些方法有助于解决纳米流体在长期应用时存在的稳定性低的问题。
中图分类号:
熊亚选, 宋超宇, 药晨华, 王慧慧, 王辉祥, 胡子亮, 吴玉庭, 丁玉龙. 纳米流体稳定性研究综述[J]. 华电技术, 2021, 43(7): 68-74.
XIONG Yaxuan, SONG Chaoyu, YAO Chenhua, WANG Huihui, WANG Huixiang, HU Ziliang, WU Yuting, DING Yulong. Review on the stability of nanofluids[J]. Huadian Technology, 2021, 43(7): 68-74.
[1] |
LEE S, CHOI S, LI S, et al. Measuring thermal conductivity of fluids containing oxide nanoparticles[J]. Journal of Heat Transfer, 1999, 121(2):280-289.
doi: 10.1115/1.2825978 |
[2] | 李龙, 王江, 翟玉玲, 等. CuO-ZnO混合纳米流体导热系数影响分析[J]. 工业加热, 2019, 48(3):38-40. |
LI Long, WANG Jiang, ZHAI Yulin, et al. Analysis of thermal conductivity of CuO-ZnO nanofluids in ethylene glycol/water mixture[J]. Industrial Heating, 2019, 48(3):38-40. | |
[3] |
TAGHIZADEH A, TAGHIZADEH M, AZIMI M, et al. Influence of cerium oxide nanoparticles on thermal conductivity of antifreeze[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(4):225-236.
doi: 10.1007/s10973-019-08422-2 |
[4] |
RASHIDI S, ESKANDARIAN M, MAHIAN O, et al. Combination of nanofluid and inserts for heat transfer enhancement[J]. Journal of Thermal Analysis and Calorimetry, 2019, 135(1):437-460.
doi: 10.1007/s10973-018-7070-9 |
[5] |
ZOU Lulu, CHEN Xia, WU Yuting, et al. Experimental study of thermophysical properties and thermal stability of quaternary nitrate molten salts for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2019, 190:12-19.
doi: 10.1016/j.solmat.2018.10.013 |
[6] | SHIN D, BANERJEE D. Enhanced specific heat of silica nanofluid[J]. Journal of Heat Transfer, 2011, 133(2):216-220. |
[7] |
CHEN Xia, WU Yuting, ZHANG Ludi, et al. Experimental study on the specific heat and stability of molten salt nanofluids prepared by high-temperature melting[J]. Solar Energy Materials and Solar Cells, 2018, 176:42-48.
doi: 10.1016/j.solmat.2017.11.021 |
[8] | XIE Qiangzhi, ZHU Qunzhi, LI Yan. Thermal storage properties of molten nitrate salt-based nanofluids with graphene nanoplatelets[J/OL]. Nanoscale Research Letters, 2016.(2016-06-21)[2021-04-10]. https://doi.org/10.1186/s11671-016-1519-1. |
[9] | WU Yanze, LI Jinli, WANG Min, et al. Solar salt doped by MWCNTs as a promising high thermal conductivity material for CSP[J]. RSC Advances, 2018, 34(8):19251-19260. |
[10] |
NIETO-MAESTRE J, MUñOZ-SáNCHEZ B, FERNáNDEZ AG, et al. Compatibility of container materials for concentrated solar power with a solar salt and alumina based nanofluid:A study under dynamic conditions[J]. Renewable Energy, 2020, 146:384-396.
doi: 10.1016/j.renene.2019.06.145 |
[11] | PETHURAJAN V, SURESH S, MOJIRI A, et al. Microencapsulation of nitrate salt for solar thermal energy storage-synthesis,characterisation and heat transfer study[J/OL]. Solar Energy Materials and Solar Cells, 2020.(2019-11-25)[2021-04-10]. https//doi.org/10.1016/j.solmat.2019.110308. |
[12] |
XIONG Yaxuan, SUN Mingyuan, WU Yuting, et al. Effects of synjournal methods on thermal performance of nitrate salt nanofluids for concentrating solar power[J]. Energy & Fuels, 2020, 34(9):11606-11619.
doi: 10.1021/acs.energyfuels.0c02466 |
[13] | HU Yanwei, ZHANG Borui, TAN Kaiyu, et al. Regulation of natural convection heat transfer for SiO2-solar salt nanofluids by optimizing rectangular vessels design[J/OL]. Asia-Pacific Journal of Chemical Engineering, 2020.(2020-01-21)[2021-04-10]. https://doi.org/10.1002/apj.2409. |
[14] | TIZNOBAIK H, SHIN D. Experimental study of the effect of nanoparticle concentration on thermo-physical properties of molten salt nanofluids[C]// ASME 2019 International Mechanical Engineering Congress and Exposition.Salt Lake City, 2019. |
[15] | ALAM M S, ALI M, ALIM M A, et al. Unsteady boundary layer nanofluid flow and heat transfer along a porous stretching surface with magnetic field[C]// 7th Bsme International Conference on Thermal Engineering.Dhaka, 2017. |
[16] |
AKBARI O A, TOGHRAIE D, KARIMIPOUR A, et al. The effect of velocity and dimension of solid nanoparticles on heat transfer in non-newtonian nanofluid[J]. Physica E:Low-dimensional Systems and Nanostructures, 2017, 86:68-75.
doi: 10.1016/j.physe.2016.10.013 |
[17] |
KRISHNAN SJ S, NAGARAJAN P K. Influence of stability and particle shape effects for an entropy generation based optimized selection of magnesia nanofluid for convective heat flow applications[J]. Applied Surface Science, 2019, 489:560-575.
doi: 10.1016/j.apsusc.2019.06.038 |
[18] |
MAHBUBUL I M, ELCIOGLU E B, AMALINA M A, et al. Stability,thermophysical properties and performance assessment of alumina-water nanofluid with emphasis on ultrasonication and storage period[J]. Powder Technology, 2019, 345:668-675.
doi: 10.1016/j.powtec.2019.01.041 |
[19] | AZIZ S, KHALID S, KHALID H. Influence of surfactant and volume fraction on the dispersion stability of TiO2/deionized water based nanofluids for heat transfer applications[J/OL]. Materials Research Express, 2018.(2018-10-17)[2021-04-10]. https://doi.org/10.1088/2053-1591/aae6ac. |
[20] | NAVARRETE N, GIMENO F A, FORNER E J, et al. Colloidal stability of molten salt-based nanofluids:Dynamic light scattering tests at high temperature conditions[J]. Powder Technology, 2019(352):1-10. |
[21] |
CHOUDHARY R, KHURANA D, KUMAR A, et al. Stability analysis of Al2O3/water nanofluids[J]. Journal of Experimental Nanoscience, 2017, 12(1):140-151.
doi: 10.1080/17458080.2017.1285445 |
[22] |
ZAREEI M, YOOZBASHIZADEH H, HOSSEINI HRM. Investigating the effects of pH,surfactant and ionic strength on the stability of alumina/water nanofluids using DLVO theory[J]. Journal of Thermal Analysis and Calorimetry, 2018, 135(2):1185-1196.
doi: 10.1007/s10973-018-7620-1 |
[23] |
KATIYAR A, HARIKRISHNAN A R, DHAR P. Influence of temperature and particle concentration on the pH of complex nanocolloids[J]. Colloid and Polymer Science, 2017, 295(9):1575-1583.
doi: 10.1007/s00396-017-4132-7 |
[24] |
ZHANG Hao, QING Shan, ZHAI Yuling, et al. The changes induced by pH in TiO2/water nanofluids:Stability,thermophysical properties and thermal performance[J]. Powder Technology, 2021, 377:748-759.
doi: 10.1016/j.powtec.2020.09.004 |
[25] | 张飞龙, 罗鹏飞, 郭景丽, 等. Cu/rGO纳米流体的制备及稳定性能研究[J]. 化工科技, 2017, 25(6):7-11. |
ZHANG Feilong, LUO Pengfei, GUO Jingli, et al. Synjournal and dispersion stability of Cu/rGO nanofluids[J]. Science & Technology In Chemical Industry, 2017, 25(6):7-11. | |
[26] |
CAKMAK N K. The impact of surfactants on the stability and thermal conductivity of graphene oxide de-ionized water nanofluids[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(3):1895-1902.
doi: 10.1007/s10973-019-09096-6 |
[27] |
WANG Jin, LI Guolong, LI Tan, et al. Effect of various surfactants on stability and thermophysical properties of nanofluids[J]. Journal of Thermal Analysis and Calorimetry, 2020, 143(6):4057-4070.
doi: 10.1007/s10973-020-09381-9 |
[28] | KUMAR R S, CHATURVEDI K R, IGLAUER S, et al. Impact of anionic surfactant on stability,viscoelastic moduli,and oil recovery of silica nanofluid in saline environment[J/OL]. Journal of Petroleum Science and Engineering, 2020.(2020-07-16)[2021-04-10]. https://doi.org/10.1016/j.petrol.2020.107634. |
[29] | 王良虎, 向军, 李菊香. 纳米流体的稳定性研究[J]. 材料导报, 2011, 25(s1):17-20. |
WANG Lianghu, XIANG Jun, LI Juxiang. Study on stability of nanofluid[J]. Materials Reports, 2011; 25(s1):17-20. | |
[30] | 丁洁, 王平, 张本国, 等. 混合基纳米流体在汽车散热器中的稳定性及传热特性[J]. 科学技术与工程, 2019, 19(1):196-206. |
DING Jie, WANG Ping, ZHANG Benguo, et al. Stability and heat transfer characteristics in automotive radiators of mixed-based nanofluids[J]. Science Technology and Engineering, 2019, 19(1):196-206. | |
[31] | TENG T P, FANG Y B, HSU Y C, et al. Evaluating stability of aqueous multiwalled carbon nanotube nanofluids by using different stabilizers[J/OL]. Journal of Nanomaterials, 2014.(2014-11-10)[2021-04-10]. https://doi.org/10.1155/2014/693459. |
[32] | MAMAT H, ISA R M. Enhancement of stability and thermal conductivity of nanofluids using chinese ink as a surfactant[C]// 4th International Conference on Engineering Technology.Journal of Physics:Conference Series, 2019. |
[33] | 陈裕丰, 章学来, 丁锦宏, 等. 表面活性剂对Al2O3-H2O纳米流体热物性特性的影响[J]. 低温与超导, 2017, 45(12):74-79. |
CHEN Yufeng, ZHANG Xuelai, DING Jinhong, et al. Effects of surfactants on thermo-physical properties of Al2O3 nanofluids [J]. Cryogenics & Superconductivity, 2017, 45(12):74-79. | |
[34] | RASHIDI S, ABDULLAH L C, WALVERKAR R, et al. Stability enhancement of MWCNT/water nanofluids using PVA surfactant[J]. International Journal of Nanotechnology, 2020, 6(11/12):631-639. |
[35] |
GIMENO-FURIO A, NAVARRETE N, MONDRAGON R, et al. Stabilization and characterization of a nanofluid based on a eutectic mixture of diphenyl and diphenyl oxide and carbon nanoparticles under high temperature conditions[J]. International Journal of Heat and Mass Transfer, 2017, 113:908-913.
doi: 10.1016/j.ijheatmasstransfer.2017.05.097 |
[36] | AFZAL A, KHAN S A, AHAMED S C. Role of ultrasonication duration and surfactant on characteristics of ZnO and CuO nanofluids[J/OL]. Materials Research Express, 2019.(2019-11-01)[2021-04-10]. https://doi.org/10.1088/2053-1591/ab5013. |
[37] | 张晓盼, 鹿院卫, 于强, 等. 超声-微波法制备熔盐纳米复合材料试验研究[J]. 华电技术, 2020, 42(4):12-16. |
ZHANG Xiaopan, LU Yuanwei, YU Qiang, et al. Experimental study on preparation of a molten salt nanocomposite by ultrasonic dispersion and microwave method[J]. Huadian Technology, 2020, 42(4):12-16. | |
[38] | ISMAIL H, SULAIMAN M Z, AIZZAT MAH. Qualitative investigations on the stability of Al2O3-SiO2 hybrid water-based nanofluids[C]//. 5th International Conference on Mechanical Engineering Research,Kuantan, 2019. |
[39] |
MAHBUBUL I M, SAIDUR R, AMALINA M A, et al. Effective ultrasonication process for better colloidal dispersion of nanofluid[J]. Ultrasonics Sonochemistry, 2015, 26:361-369.
doi: 10.1016/j.ultsonch.2015.01.005 |
[40] | 杨柳, 杜垲, 李彦军, 等. 氨水-Fe2O3纳米流体稳定性影响因素分析[J]. 工程热物理学报, 2010, 32(9):1457-1460. |
YANG Liu, DU Kai, LI Yanjun, et al. Dispersing of Fe2O3 nano-particles in ammonia-water suspension [J]. Journal of Engineering Thermophysics, 2010, 32(9):1457-1460. | |
[41] |
LI F S, LI L, ZHONG G J, et al. Effects of ultrasonic time,size of aggregates and temperature on the stability and viscosity of Cu-ethylene glycol(EG) nanofluids[J]. International Journal of Heat and Mass Transfer, 2019, 129:278-86.
doi: 10.1016/j.ijheatmasstransfer.2018.09.104 |
[42] |
ASADI A, ASADI M, SIAHMARGOI M, et al. The effect of surfactant and sonication time on the stability and thermal conductivity of water-based nanofluid containing Mg(OH)2 nanoparticles:An experimental investigation[J]. International Journal of Heat and Mass Transfer, 2017, 108:191-198.
doi: 10.1016/j.ijheatmasstransfer.2016.12.022 |
[43] | CHIERUZZI M, CERRITELLI G F, MILIOZZI A, et al. Heat capacity of nanofluids for solar energy storage produced by dispersing oxide nanoparticles in nitrate salt mixture directly at high temperature[J]. Solar Energy Materials and Solar Cells, 2017, 167:60-69. |
[44] | GUPTA N, GUPTA S M, SHARMA S K., Synthesis,characterization and dispersion stability of water-based Cu-CNT hybrid nanofluid without surfactant[J/OL]. Microfluidics and Nanofluidics, 2021.(2021-01-20)[2021-04-10]. https://doi.org/10.1007/s10404-021-02421-2. |
[45] |
AFRAND M. Experimental study on thermal conductivity of ethylene glycol containing hybrid nano-additives and development of a new correlation[J]. Applied Thermal Engineering, 2017, 110:1111-1119.
doi: 10.1016/j.applthermaleng.2016.09.024 |
[46] | SHAH T R, KOTEN H, ALI H M. Performance effecting parameters of hybrid nanofluids[M]. Hybrid Nanofluids for Convection Heat Transfer. 2020:179-213. |
[47] |
LIU Z W, CHEN Y, MO S P, et al. Stability of TiO2 nanoparticles in deionized water with ZrP nanoplatelets[J]. Journal of Nanoscience and Nanotechnology, 2015, 15(4):3271-3275.
doi: 10.1166/jnn.2015.9685 |
[48] | 马明琰, 翟玉玲, 轩梓灏, 等. 三元混合纳米流体稳定性及热性能[J/OL]. 化工进展, 2020.(2020-11-26)[2021-04-10]. https://doi.org/10.16085/j.issn.1000-6613.2020-1858. |
MA Mingyan, ZHAI Yulin, XUAN Zihao. Stability and thermal performance of ternary hybrid nanofluids[J/OL]. Chemical Industry and Engineering Progress, 2020.(2020-11-26)[2021-04-10]. https://doi.org/10.16085/j.issn.1000-6613.2020-1858. | |
[49] | FIKRI M A, FAIZAL W M, ADLI H K, et al. Investigation on stability of TiO2-SiO2 nanofluids with ratio(70∶30)in W/EG mixture(60∶40)[C]// IOP Conference Series: Materials Science and Engineering.Selangor, 2020. |
[50] | 李昭, 李宝让, 崔柳, 等. 高温熔盐基纳米流体热物性的稳定性研究[J]. 储能科学与技术, 2020, 9(6):1775-1783. |
LI Zhao, LI Baorang, CUI Liu,et,al.Stability of the thermal performances of molten salt-based nanofluid[J]. Energy Storage Science and Technology, 2020, 9(6):1775-1783. |
[1] | 邹风华, 朱星阳, 殷俊平, 孟诗语, 江海燕, 陈爱康, 刘澜. “双碳”目标下建筑能源系统发展趋势分析[J]. 综合智慧能源, 2024, 46(8): 36-40. |
[2] | 徐智帆, 李华森, 李文院, 余凯. 基于递归小脑模型神经网络和卡尔曼滤波器的锂电池荷电状态预测[J]. 综合智慧能源, 2024, 46(7): 81-86. |
[3] | 王俊, 田浩, 赵二岗, 舒展, 万子镜. 计及电动汽车共享储能特性的园区柔性资源低碳运行控制方法[J]. 综合智慧能源, 2024, 46(6): 16-26. |
[4] | 王林, 孔小民, 周忠玉, 刘建平, 王晓东, 张宁. 云储能模式下的配电网分布式光伏-储能无功优化方法[J]. 综合智慧能源, 2024, 46(6): 44-53. |
[5] | 张勋祥, 吴杰康, 孙烨桦, 彭其坚. 平抑海上风电波动的混合储能系统容量优化配置[J]. 综合智慧能源, 2024, 46(6): 54-65. |
[6] | 龚钢军, 王路遥, 常卓越, 柳旭, 邢汇笛. 基于能源枢纽的综合能源信息物理系统安全防护架构研究[J]. 综合智慧能源, 2024, 46(5): 65-72. |
[7] | 李云, 周世杰, 胡哲千, 梁均原, 肖雷鸣. 基于NSGA-Ⅱ-WPA的综合能源系统多目标优化调度[J]. 综合智慧能源, 2024, 46(4): 1-9. |
[8] | 董强, 徐君, 方东平, 方丽娟, 陈妍琼. 基于光伏出力特性的分布式光储系统优化调度策略[J]. 综合智慧能源, 2024, 46(4): 17-23. |
[9] | 苑曙光, 张瑜婷, 王峰, 苑广震. 蒙西地区规模化储能商业运行模式及风险分析[J]. 综合智慧能源, 2024, 46(3): 63-71. |
[10] | 李益民, 董海鹰, 丁坤, 王金岩. 考虑长期负荷概率预测的储能多阶段优化配置[J]. 综合智慧能源, 2024, 46(2): 19-27. |
[11] | 孙娜, 董海鹰, 陈薇, 马虎林. 新型电力系统场景下网侧规模化储能二次调频控制策略[J]. 综合智慧能源, 2024, 46(2): 59-67. |
[12] | 孔慧超, 王文钟, 雷一, 彭静, 李海波. 园区受端新型电力系统电力电量再平衡方法[J]. 综合智慧能源, 2024, 46(2): 68-74. |
[13] | 田泽禹, 沙钊旸, 赵全斌, 严卉, 种道彤. 针对温控负载变化的虚拟电厂控制策略研究[J]. 综合智慧能源, 2024, 46(1): 28-37. |
[14] | 胡超, 彭文河, 方支剑. 基于光储充电站的电动汽车分层优化调度[J]. 综合智慧能源, 2023, 45(9): 11-17. |
[15] | 崔金栋, 汪羽晴. 云储能模式下用户侧储能协调优化调度机制研究[J]. 综合智慧能源, 2023, 45(9): 18-25. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||