[1] |
童家麟, 张岩, 刘文胜, 等. 对冲燃烧锅炉掺烧污泥炉内燃烧及碱金属分布模拟研究[J/OL]. 综合智慧能源, 2023:1-9(2024-03-01)[2023-08-22]. https://kns.cnki.net/kcms2/article/abstract?v=ttOPOQ75YvIpq2efWJFMQA9cd07-A3-zxkdO7mBauUCMV6lg1fdiGSO4w7XLTlKbcn2cLil7BFcxh_i070A_mE4OxFFrvCbMDG0YohrgGOU9zFi_619aWQYmcbIyGg_CxQrDHkykI68=&uniplatform=NZKPT&language=CHS.
|
|
TONG Jialin, ZHANG Yan, LIU Wensheng, et al. Simulation study on combustion and distribution of alkali metals in a mixed sludge furnace of a counter combustion boiler[J/OL]. Integrated Intelligent Energy, 2023:1-9(2024-03-01)[2023-08-22]. https://kns.cnki.net/kcms2/article/abstract?v=ttOPOQ75YvIpq2efWJFMQA9cd07-A3-zxkdO7mBauUCMV6lg1fdiGSO4w7XLTlKbcn2cLil7BFcxh_i070A_mE4OxFFrvCbMDG0YohrgGOU9zFi_619aWQYmcbIyGg_CxQrDHkykI68=&uniplatform=NZKPT&language=CHS.
|
[2] |
YANG W, CAI C, YANG D H, et al. Implications for assessing sludge hygienization: Differential responses of the bacterial community, human pathogenic bacteria, and fecal indicator bacteria to sludge pretreatment-anaerobic digestion[J]. Journal of Hazardous Materials, 2023, 443: 130110.
|
[3] |
胡玮麟, 谭梦娇, 朱艺, 等. 生物质储藏技术研究进展[J]. 综合智慧能源, 2023, 45(5): 80-85.
doi: 10.3969/j.issn.2097-0706.2023.05.009
|
|
HU Weilin, TAN Mengjiao, ZHU Yi, et al. Research progress of biomass storage technologies[J]. Integrated Intelligent Energy, 2023, 45(5): 80-85.
doi: 10.3969/j.issn.2097-0706.2023.05.009
|
[4] |
LI C W, LE-MINH N, MCDONALD J A, et al. Occurrence and risk assessment of trace organic contaminants and metals in anaerobically co-digested sludge[J]. Science of the Total Environment, 2022, 816: 151533.
|
[5] |
蒋雨辰, 李清扬, 胡勋. 基于微波热解技术制备生物炭的研究进展[J]. 综合智慧能源, 2023, 45(5): 46-62.
doi: 10.3969/j.issn.2097-0706.2023.05.006
|
|
JIANG Yuchen, LI Qingyang, HU Xun. Research progress of biochar prepared by microwave pyrolysis technology[J]. Integrated Intelligent Energy, 2023, 45(5): 46-62.
doi: 10.3969/j.issn.2097-0706.2023.05.006
|
[6] |
范友华, 喻宁华, 邓腊云, 等. 氧化镁负载的油茶壳基生物炭的制备及其吸附镉性能研究[J]. 湖南林业科技, 2019, 46(3): 1-8.
|
|
FAN Youhua, YU Ninghua, DENG Layun, et al. Cadmium removal from aqueous solution by magnesium oxide embedded biochar composites[J]. Hunan Forestry Science & Technology, 2019, 46(3): 1-8.
|
[7] |
孙韫理, 李志钢, 周波. 过滤对压榨油茶籽油抗氧化稳定性的影响研究[J]. 湖南林业科技, 2021, 48(5): 22-27.
|
|
SUN Yunli, LI Zhigang, ZHOU Bo. Effect of filtration on the antioxidant stability of pressed Camellia seed oil[J]. Hunan Forestry Science & Technology, 2021, 48(5): 22-27.
|
[8] |
XIE B H, GONG W J, TANG X B, et al. Blending high concentration of anaerobic digestion effluent and rainwater for cost-effective Chlorella vulgaris cultivation in the photobioreactor[J]. Chemical Engineering Journal, 2019, 360: 861-865.
|
[9] |
ZHANG J S, FAN C F, ZHAO W Q, et al. Improving bio-H2 production by manganese doped magnetic carbon[J]. International Journal of Hydrogen Energy, 2019, 44(49): 26920-26932.
|
[10] |
方健梅, 蒋丽伟, 杨帆, 等. 施用生物炭对国槐人工林土壤理化性质的影响[J]. 湖南林业科技, 2023, 50(2): 14-19.
|
|
FANG Jianmei, JIANG Liwei, YANG Fan, et al. Effects of biochar application on physical and chemical properties of Sophora japonica plantation soil[J]. Hunan Forestry Science & Technology, 2023, 50(2): 14-19.
|
[11] |
何修丹, 余家琳, 陶悦, 等. 不同类型催化剂活化过硫酸盐降解水中有机污染物的研究进展[J]. 环境污染与防治, 2021, 43(10): 1344-1349.
|
|
HE Xiudan, YU Jialin, TAO Yue, et al. Research progress on the degradation of organic pollutants in water by persulfate activated with different catalysts[J]. Environmental Pollution & Control, 2021, 43(10): 1344-1349.
|
[12] |
JIANG L, ZHANG Y R, ZHU Y, et al. Effects of magnetic biochar addition on mesophilic anaerobic digestion of sewage sludge[J]. International Journal of Environmental Research and Public Health, 2023, 20(5): 4278.
|
[13] |
王江南, 孙晓雪, 杨玲辉, 等. 壳聚糖、铁锰改性稻壳生物炭的表征及其Cd2+吸附性能研究[J]. 农业环境科学学报, 2023, 42(9): 1964-1973.
|
|
WANG Jiangnan, SUN Xiaoxue, YANG Linghui, et al. Characterization of chitosan,Fe-Mn-modified rice husk biochar and its Cd2+ adsorption performance[J]. Journal of Agro-Environment Science, 2023, 42(9): 1964-1973.
|
[14] |
冉钟吕, 苍岩, 戴晨, 等. 生物炭负载铁锰氧化物吸附去除Cr(Ⅵ)的试验研究[J]. 工业用水与废水, 2022, 53(4): 28-33.
|
|
RAN Zhonglv, CANG Yan, DAI Chen, et al. Experimental study on removal of Cr(Ⅵ)by adsorption of iron and manganese oxides supported by biochar[J]. Industrial Water & Wastewater, 2022, 53(4): 28-33.
|
[15] |
ZHANG Z G, CHENG Q, HUANG J, et al. Production of biochar from the combination of foaming drying and pyrolysis of sludge with the additive of Camellia oleifera shell biochar[J]. Journal of Analytical and Applied Pyrolysis, 2021, 160: 105350.
|
[16] |
李江东, 刘润龙, 李欣, 等. 铁锰氧化物-生物炭复合材料对Pb2+的吸附研究[J]. 中北大学学报(自然科学版), 2023, 44 (5): 550-554.
|
|
LI Jiangdong, LIU Runlong, LI Xin, et al. Study on Adsorption of Pb2+ by Fe-Mn oxides biochar composites[J]. Journal of North University of China(Natural Science Edition), 2023, 44 (5): 550-554.
|
[17] |
LI J H, ZHANG M, YE Z Y, et al. Effect of manganese oxide-modified biochar addition on methane production and heavy metal speciation during the anaerobic digestion of sewage sludge[J]. Journal of Environmental Sciences, 2019, 76: 267-277.
doi: S1001-0742(18)30102-5
pmid: 30528018
|
[18] |
ZHANG M, WANG Y C. Effects of Fe-Mn-modified biochar addition on anaerobic digestion of sewage sludge: Biomethane production, heavy metal speciation and performance stability[J]. Bioresource Technology, 2020, 313: 123695.
|
[19] |
HE C S, DING R R, CHEN J Q, et al. Interactions between nanoscale zero valent iron and extracellular polymeric substances of anaerobic sludge[J]. Water Research, 2020, 178: 115817.
|
[20] |
阮仁俊, 余成龙, 李祎多, 等. 花生壳磁性生物炭对颜料污泥厌氧消化及重金属形态的影响[J]. 农业工程学报, 2022, 38(9): 261-267.
|
|
RUAN Renjun, YU Chenglong, LI Yiduo, et al. Effects of peanut shell magnetic biochar on anaerobic digestion of pigment sludge and heavy metal speciation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(9): 261-267.
|
[21] |
JIN H Y, YANG L, REN Y X, et al. Insights into the roles and mechanisms of a green-prepared magnetic biochar in anaerobic digestion of waste activated sludge[J]. Science of the Total Environment, 2023, 896: 165170.
|
[22] |
ZHANG G Y, SHI Y H, ZHAO Z S, et al. Enhanced two-phase anaerobic digestion of waste-activated sludge by combining magnetite and zero-valent iron[J]. Bioresource Technology, 2020, 306: 123122.
|
[23] |
LIZAMA A C, FIGUEIRAS C C, PEDREGUERA A Z, et al. Enhancing the performance and stability of the anaerobic digestion of sewage sludge by zero valent iron nanoparticles dosage[J]. Bioresource Technology, 2019, 275: 352-359.
doi: S0960-8524(18)31757-7
pmid: 30597397
|
[24] |
LIU X R, WU Y X, XU Q X, et al. Mechanistic insights into the effect of poly ferric sulfate on anaerobic digestion of waste activated sludge[J]. Water Research, 2021, 189: 116645.
|
[25] |
SPEIRS L B M, RICE D T F, PETROVSKi S, et al. The phylogeny, biodiversity, and ecology of the chloroflexi in activated sludge[J]. Frontiers in Microbiology, 2019, 10:2015.
|
[26] |
CHEN Y W, YANG Z H, ZHANG Y R, et al. Effects of different conductive nanomaterials on anaerobic digestion process and microbial community of sludge[J]. Bioresource Technology, 2020, 304: 123016.
|
[27] |
FENG Y H, ZHANG Y B, QUAN X, et al. Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron[J]. Water Research, 2014, 52: 242-250.
doi: 10.1016/j.watres.2013.10.072
pmid: 24275106
|
[28] |
JIANG M T, JI S H, WU R X, et al. Exploiting refractory organic matter for advanced nitrogen removal from mature landfill leachate via anammox in an expanded granular sludge bed reactor[J]. Bioresource Technology, 2023, 371: 128594.
|
[29] |
ZHONG Y J, HE J G, ZHANG P F, et al. Effects of different particle size of zero-valent iron (ZVI) during anaerobic digestion: Performance and mechanism from genetic level[J]. Chemical Engineering Journal, 2022, 435: 134977.
|
[30] |
HAO X D, WEI J, VAN L M C M, et al. Analysing the mechanisms of sludge digestion enhanced by iron[J]. Water Research, 2017, 117: 58-67.
doi: S0043-1354(17)30232-4
pmid: 28390236
|