综合智慧能源 ›› 2025, Vol. 47 ›› Issue (11): 52-61.doi: 10.3969/j.issn.2097-0706.2025.11.005

• 信息物理系统安全 • 上一篇    下一篇

基于多元检测模型的信息物理系统网络攻击防御机制

薛雯丽1(), 洪晓燕1(), 杨文杰1(), 吴婷2()   

  1. 1.广东省技师学院 机电工程学院,广东 惠州 516100
    2.哈尔滨工业大学(深圳) 机器人与先进制造学院,广东 深圳 518055
  • 收稿日期:2025-03-15 修回日期:2025-10-16 出版日期:2025-11-25
  • 作者简介:薛雯丽(1996),女,硕士,从事机电一体化、智能电网安全等方面的研究,283793143@qq.com
    洪晓燕(1976),女,高级讲师,从事机电一体化、自动控制、模具设计等方面的研究,2352054433@qq.com
    杨文杰(1986),男,高级讲师,从事机电一体化、智能电网数据分析等方面的研究,234595761@qq.com
    吴婷(1987),女,副教授,博士,从事信息物理融合系统攻防博弈、交通电力系统优化规划与运行控制等方面的研究,twu920@hotmail.com
  • 基金资助:
    广东省基础与应用基础研究基金项目(2024A1515011012)

Multivariate detection model-based defense mechanism against cyber attacks on cyber-physical power systems

XUE Wenli1(), HONG Xiaoyan1(), YANG Wenjie1(), WU Ting2()   

  1. 1. College of Mechanical and Electrical Engineering,Guangdong Technician College,Huizhou 516100,China
    2. School of Robotics and Advanced Manufacture, Harbin Institute of Technology (Shenzhen),Shenzhen 518055, China
  • Received:2025-03-15 Revised:2025-10-16 Published:2025-11-25
  • Supported by:
    Basic and Applied Basic Research Foundation of Guangdong Province(2024A1515011012)

摘要:

在新型信息物理系统的发展过程中,虚假数据注入攻击构成了严重威胁,它可以通过篡改电网数据信息形成虚假的电网状态,诱导运行人员做出错误的运行决策,进而干扰电力系统的稳定运行。现有的防御手段无法解决复杂数据类型的攻击,也无法精确定位异常的状态,因此,提出多情形交流虚假数据注入攻击策略,构建更符合实际电网环境且具有强隐蔽性的攻击模型。在此基础上,设计基于多元检测模型的防御机制,有效结合极限学习机、极端梯度提升树、轻量级梯度提升器3种检测器的优点,以多情形的攻击情况为训练数据,形成高效、精准定位异常状态的攻击检测模型。攻击和防御模型都在IEEE 14和IEEE 57节点系统中仿真。试验结果验证了攻击的有效性、隐蔽性、多样性以及检测机制的实时性和准确性。

关键词: 信息物理系统, 电力信息安全, 虚假数据注入攻击, 多元检测模型, 极限学习机, 极端梯度提升树, 轻量级梯度提升器

Abstract:

False data injection attacks pose a severe threat that cannot be overlooked during the development of new cyber-physical power systems. These attacks can tamper with power grid data to create false grid states, mislead operators into making incorrect operational decisions, and consequently disrupt the stable operation of the power system. Moreover, existing defense methods are incapable of addressing attacks involving complex data types or pinpointing abnormal states. Therefore, a multi-scenario AC false data injection attack strategy was proposed, and an attack model better aligning with actual power grid environments and exhibiting strong stealthiness was constructed. On this basis, a defense mechanism based on a multivariate detection model was designed, effectively integrating the advantages of three detectors: extreme learning machine, extreme gradient boosting, and light gradient boosting machine. Using multi-scenario attack cases as training data, an efficient attack detection model capable of pinpointing abnormal states was formed. Both the attack and defense models were simulated in IEEE 14-bus and IEEE 57-bus systems. The experimental results verified the effectiveness, stealthiness, and diversity of the attacks, as well as the real-time performance and accuracy of the detection mechanism.

Key words: cyber-physical power system, electric power system information security, false data injection attack, multivariate detection model, extreme learning machine, extreme gradient boosting, light gradient boosting machine

中图分类号: