综合智慧能源 ›› 2024, Vol. 46 ›› Issue (1): 56-64.doi: 10.3969/j.issn.2097-0706.2024.01.007
李彬1(), 白雪峰1,*(
), 李志超1(
), 王仕俊2(
), 刘淳2(
), 程紫运2(
)
收稿日期:
2023-01-02
修回日期:
2023-03-31
出版日期:
2024-01-25
通讯作者:
*白雪峰(1997),男,硕士生,从事自动需求响应、电力通信技术等方面的研究,884973072@qq.com。作者简介:
李彬(1983),男,副教授,博士,从事电气信息技术、自动需求响应技术方面的研究,direfish@163.com;基金资助:
LI Bin1(), BAI Xuefeng1,*(
), LI Zhichao1(
), WANG Shijun2(
), LIU Chun2(
), CHENG Ziyun2(
)
Received:
2023-01-02
Revised:
2023-03-31
Published:
2024-01-25
Supported by:
摘要:
随着“双碳”目标的提出,以及“以电代煤”政策的贯彻落实,大量电采暖设备取代传统燃煤取暖投入运行并接入电网将成为必然趋势。大量电采暖设备可以作为需求侧可调资源进行新能源消纳,但是分布式电采暖所处地理区域较为分散,传统集中式管理的方式又存在隐私泄露、数据孤岛等问题。联邦学习作为一种分布式技术可在保护隐私的前提下支撑电采暖负荷互动,在分布式电采暖互动领域具有较强的适用性。分析了基于联邦学习的分布式电采暖互动需求,以及边缘缓存、隐私防护、通信传输优化和异构资源融合等技术在基于联邦学习的电采暖互动场景中的应用方式,并展望了未来基于联邦学习的分布式电采暖互动前景。
中图分类号:
李彬, 白雪峰, 李志超, 王仕俊, 刘淳, 程紫运. 基于联邦学习的分布式电采暖互动模式设计与展望[J]. 综合智慧能源, 2024, 46(1): 56-64.
LI Bin, BAI Xuefeng, LI Zhichao, WANG Shijun, LIU Chun, CHENG Ziyun. Design and prospect of distributed electric heating interactive mode based on federated learning[J]. Integrated Intelligent Energy, 2024, 46(1): 56-64.
[1] | 别朝红, 林超凡, 李更丰, 等. 能源转型下弹性电力系统的发展与展望[J]. 中国电机工程学报, 2020, 40(9):2735-2744. |
BIE Chaohong, LIN Chaofan, LI Gengfeng, et al. Development and prospect of resilient power system in the context of energy transition[J]. Proceedings of the CSEE, 2020, 40(9): 2735-2744. | |
[2] |
王盛, 谈健, 史文博, 等. 英国新型电力系统建设经验以及对我国省级电网发展启示[J]. 综合智慧能源, 2022, 44(7): 19-32.
doi: 10.3969/j.issn.2097-0706.2022.07.003 |
WANG Sheng, TAN Jian, SHI Wenbo, et al. Practices of the new power system in the UK and inspiration for the development of provincial power systems in China[J]. Integrated Intelligent Energy, 2022, 44(7): 19-32.
doi: 10.3969/j.issn.2097-0706.2022.07.003 |
|
[3] | 严干贵, 蔡长兴, 段双明, 等. 考虑电池储能单元分组优化的微电网运行控制策略[J]. 电力系统自动化, 2020, 44(23): 38-46. |
YAN Gangui, CAI Changxing, DUAN Shuangming, et al. Operation control strategy of microgrid considering grouping optimization of battery energy storage units[J]. Automation of Electric Power Systems, 2020, 44(23): 38-46. | |
[4] | 刘吉臻, 王玮, 胡阳, 等. 新能源电力系统控制与优化[J]. 控制理论与应用, 2016, 33(12): 1555-1561. |
LIU Jizhen, WANG Wei, HU Yang, et al. Control and optimization of alternate electrical power system with renewable energy sources[J]. Control Theory & Applications, 2016, 33(12): 1555-1561. | |
[5] | 国家发展改革委, 国家能源局, 财政部, 等. 关于印发北方地区冬季清洁取暖规划(2017—2021年)的通知[EB/OL].(2017-12-20)[2023-03-31]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/201712/t20171220_962623.html. |
[6] | 央广网. 天津“煤改电”工程全部竣工惠及46万户居民[EB/OL].(2019-11-07)[2023-03-31]. http://www.cnr.cn/tj/jrtj/20191107/t20191107_524848423.shtml. |
[7] | 央视新闻. 北京清洁取暖 “煤改电”用户已达130万[EB/OL].(2020-11-21)[2023-03-31]. https://www.thecover.cn/news/6126854. |
[8] | 王德宇, 宋亚岚. 通州区“煤改电”智能化监测平台建设实践[J]. 广播电视网络, 2021, 28(5):57-59. |
WANG Deyu, SONG Yalan. Construction practice of intelligent monitoring platform for "Replacing Coal with Electricity" in Tongzhou district[J]. Radio & Television Network, 2021, 28(5): 57-59. | |
[9] | 王昆, 刘洋. 河北:“光伏+电采暖”让农民清洁温暖过冬[EB/OL].(2021-12-01)[2023-03-31]. https://hebei.ifeng.com/c/8BZcVDCDQ6I. |
[10] | 祁兵, 张露露, 李彬, 等. 基于电压监测的分布式电采暖实时优化控制策略[J]. 现代电力, 2021, 38(4): 449-454. |
QI Bing, ZHANG Lulu, LI Bin, et al. A Voltage monitoring-based realtime optimized control strategy for distributed electric heating[J]. Modern Electric Power, 2021, 38(4): 449-454. | |
[11] | 严干贵, 阚天洋, 杨玉龙, 等. 基于深度强化学习的分布式电采暖参与需求响应优化调度[J]. 电网技术, 2020, 44(11):4140-4147. |
YAN Gangui, KAN Tianyang, YANG Yulong, et al. Demand response optimal scheduling for distributed electric heating based on deep reinforcement learning[J]. Power Grid Technology, 2020, 44(11): 4140-4147. | |
[12] | 曾建电, 王田, 贾维嘉, 等. 传感云研究综述[J]. 计算机研究与发展, 2017, 54(5):925-939. |
ZENG Jiandian, WANG Tian, JIA Weijia, et al. A survey on sensor-cloud[J]. Journal of Computer Research and Development, 2017, 54(5):925-939. | |
[13] | 张依琳, 陈宇翔, 田晖, 等. 联邦学习在边缘计算场景中应用研究进展[J]. 小型微型计算机统, 2021, 42(12):2645-2653. |
ZHANG Yilin, CHEN Yuxiang, TIAN Hui, et al. Survey on federated learning application on scenarios of edge computing[J]. Journal of Chinese Computer Systems, 2021, 42(12): 2645-2653. | |
[14] | 范帅, 郏琨琪, 郭炳庆, 等. 分散式电采暖负荷协同优化运行策略[J]. 电力系统自动化, 2017, 41(19):20-29. |
FAN Shuai, JIA Kunqi, GUO Bingqing, et al. Collaborative optimal operation strategy for decentralized electric heating loads[J]. Power System Automation, 2017, 41(19):20-29. | |
[15] | 李香龙, 马龙飞, 赵向阳, 等. 基于LSTM网络的时间多尺度电采暖负荷预测[J]. 电力系统及其自动化学报, 2021, 33(4):71-75. |
LI Xianglong, MA Longfei, ZHAO Xiangyang, et al. Multi-time scale electric heating load forecasting based on long short-term memory network[J]. Proceedings of the CSU-EPSA, 2021, 33(4): 71-75. | |
[16] | 肖勇, 吴昊文, 王宗义, 等. 面向可中断负荷控制的需求响应通信业务优化[J]. 电力系统自动化, 2020, 44(15):36-43. |
XIAO Yong, WU Haowen, WANG Zongyi, et al. Communication service optimization of demand response for interruptible load control[J]. Power System Automation, 2020, 44(15): 36-43. | |
[17] | 李光辉, 李宜璟, 胡世红. 移动边缘计算中基于联邦学习的视频请求预测和协作缓存策略[J]. 电子与信息学报, 2023, 45(1):218-226. |
LI Guanghui, LI Yijing, HU Shihong. Video request prediction and cooperative caching strategy based on federated learning in mobile edge computing[J]. Journal of Electronics & Information Technology, 2023, 45(1):218-226. | |
[18] | CHENG K, FAN T, JIN Y, et al. Secureboost: A lossless federated learning framework[J]. IEEE Intelligent Systems, 2021, 36(6): 87-98. |
[19] |
AONO Y, HAYASHI T, WANG L, et al. Privacy-preserving deep learning via additively homomorphic encryption[J]. IEEE Transactions on Information Forensics and Security, 2017, 13(5): 1333-1345.
doi: 10.1109/TIFS.2017.2787987 |
[20] | NASR M, SHOKRI R, HOUMANSADR A. Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning[C]// 2019 IEEE symposium on security and privacy (SP). IEEE, 2019: 739-753. |
[21] | BONAWITZ K, IVANOV V, KREUTER B, et al. Practical secure aggregation for privacy-preserving machine learning[C]// Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. 2017: 1175-1191. |
[22] | 刘艺璇, 陈红, 刘宇涵, 等. 联邦学习中的隐私保护技术[J]. 软件学报, 2022, 33(3):1057-1092. |
LIU Yixuan, CHEN Hong, LIU Yuhan, et al. Privacy-preserving techniques in federated learning[J]. Journal of Software, 2022, 33(3): 1057-1092. | |
[23] |
ZHU T, LI G, ZHOU W, et al. Differentially private data publishing and analysis: A survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(8): 1619-1638.
doi: 10.1109/TKDE.2017.2697856 |
[24] | GEYER R C, KLEIN T, NABI M. Differentially private federated learning: A client level perspective[J]. arXiv preprint arXiv:1712.07557, 2017. |
[25] |
LU Y, HUANG X, DAI Y, et al. Differentially private asynchronous federated learning for mobile edge computing in urban informatics[J]. IEEE Transactions on Industrial Informatics, 2019, 16(3): 2134-2143.
doi: 10.1109/TII.9424 |
[26] |
ARACHCHIGE P C M, BERTOK P, KHALIL I, et al. Local differential privacy for deep learning[J]. IEEE Internet of Things Journal, 2019, 7(7): 5827-5842.
doi: 10.1109/JIoT.6488907 |
[27] |
WANG J, WU L, WANG H, et al. An efficient and privacy-preserving outsourced support vector machine training for internet of medical things[J]. IEEE Internet of Things Journal, 2020, 8(1): 458-473.
doi: 10.1109/JIoT.6488907 |
[28] |
王腾, 霍峥, 黄亚鑫, 等. 联邦学习中的隐私保护技术研究综述[J]. 计算机应用, 2023, 43(2):437-449.
doi: 10.11772/j.issn.1001-9081.2021122072 |
WANG Teng, HUO Zheng, HUANG Yaxin, et al. Review on privacy-preserving technologies in federated learning[J]. Journal of Computer Applications, 2023, 43(2):437-449.
doi: 10.11772/j.issn.1001-9081.2021122072 |
|
[29] | 陈智罡, 王箭, 宋新霞. 全同态加密研究[J]. 计算机应用研究, 2014, 31(6):1624-1631. |
CHEN Zhigang, WANG Jian, SONG Xinxia. Survey on fully homomorphic encryption[J]. Journal of Computer Applications, 2014, 31(6): 1624-1631.
doi: 10.3724/SP.J.1087.2011.01624 |
|
[30] |
SHAMIR A. How to share a secret[J]. Communications of the ACM, 1979, 22(11): 612-613..
doi: 10.1145/359168.359176 |
[31] | BONAWITZ K, IVANOV V, KREUTER B, et al. Practical secure aggregation for privacy-preserving machine learning[C]// Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. 2017: 1175-1191. |
[32] | KONEČNÝ J. Stochastic,distributed and federated optimization for machine learning[J]. arXiv preprint arXiv:1707.01155, 2017. |
[33] | LU S, ZHANG Y, WANG Y, et al. Learn electronic health records by fully decentralized federated learning[J]. arXiv preprint arXiv:1912.01792, 2019. |
[34] | BRENDAN MCMAHAN H, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[J]. arXiv e-prints, 2016: arXiv: 1602.05629. |
[35] |
SATTLER F, WIEDEMANN S, MÜLLER K R, et al. Robust and communication-efficient federated learning from Non-IID data[J]. IEEE transactions on neural networks and learning systems, 2019, 31(9): 3400-3413.
doi: 10.1109/TNNLS.5962385 |
[36] | 高晗, 田育龙, 许封元, 等. 深度学习模型压缩与加速综述[J]. 软件学报, 2021, 32(1):68-92. |
GAO Han, TIAN Yulong, XU Fengyuan, et al. Survey of deep learning model compression and acceleration[J]. Journal of Software, 2021, 32(1): 68-92. | |
[37] | ZHU Z, HONG J, ZHOU J. Data-free knowledge distillation for heterogeneous federated learning[C]// International Conference on Machine Learning. PMLR, 2021: 12878-12889. |
[38] | KONEČNÝ J, MCMAHAN H B, RAMAGE D, et al. Federated optimization: Distributed machine learning for on-device intelligence[J]. arXiv preprint arXiv:1610.02527, 2016. |
[39] | SATTLER F, MARBAN A, RISCHKE R, et al. Communication-efficient federated distillation[J]. arXiv preprint arXiv:2012.00632, 2020. |
[40] |
MILLS J, HU J, MIN G. Communication-efficient federated learning for wireless edge intelligence in IoT[J]. IEEE Internet of Things Journal, 2019, 7(7): 5986-5994.
doi: 10.1109/JIoT.6488907 |
[41] | LIU L, ZHANG J, SONG S H, et al. Client-edge-cloud hierarchical federated learning[C]// ICC 2020—2020 IEEE International Conference on Communications (ICC). IEEE, 2020: 1-6. |
[42] | JIANG Y, KONEČNÝ J, RUSH K, et al. Improving federated learning personalization via model agnostic meta learning[J]. arXiv preprint arXiv:1909.12488, 2019. |
[43] | SMITH V, CHIANG C K, SANJABI M, et al. Federated multi-task learning[J]. Advances in Neural Information Processing Systems, 2017, 30. |
[44] | WANG X, HAN Y, WANG C, et al. In-edge AI: Intelligentizing mobile edge computing, caching and communication by federated learning[J]. IEEE Network, 2019, 33(5): 156-165. |
[45] |
WU Q, HE K, CHEN X. Personalized federated learning for intelligent IoT applications: A cloud-edge based framework[J]. IEEE Open Journal of the Computer Society, 2020, 1: 35-44.
doi: 10.1109/OJCS |
[46] | LI D, WANG J. FedMD: Heterogenous federated learning via model distillation[J]. arXiv preprint arXiv:1910.03581, 2019. |
[47] | CHEN Y, QIN X, WANG J, et al. Fedhealth: A federated transfer learning framework for wearable healthcare[J]. IEEE Intelligent Systems, 2020, 35(4): 83-93. |
[48] | FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]// International Conference on Machine Learning. PMLR, 2017: 1126-1135. |
[49] |
PENG Z, XU J, CHU X, et al. Vfchain: Enabling verifiable and auditable federated learning via blockchain systems[J]. IEEE Transactions on Network Science and Engineering, 2021, 9(1): 173-186.
doi: 10.1109/TNSE.2021.3050781 |
[50] |
ZHANG Y, LIU L, GU Y, et al. Offloading in software defined network at edge with information asymmetry: A contract theoretical approach[J]. Journal of Signal Processing Systems, 2016, 83: 241-253.
doi: 10.1007/s11265-015-1038-9 |
[51] | KHAN L U, PANDEY S R, TRAN N H, et al. Federated learning for edge networks: Resource optimization and incentive mechanism[J]. IEEE Communications Magazine, 2020, 58(10): 88-93. |
[52] |
周全兴, 李秋贤, 丁红发, 等. 基于博弈论优化的高效联邦学习方案[J]. 计算机工程, 2022, 48(8):144-151,159.
doi: 10.19678/j.issn.1000-3428.0062413 |
ZHOU Quanxing, LI Qiuxian, DING Hongfa, et al. Efficient federated learning scheme based on game theory optimization[J]. Computer Engineering, 2022, 48(8):144-151,159.
doi: 10.19678/j.issn.1000-3428.0062413 |
|
[53] |
莫梓嘉, 高志鹏, 杨杨, 等. 面向车联网数据隐私保护的高效分布式模型共享策略[J]. 通信学报, 2022, 43(4):83-94.
doi: 10.11959/j.issn.1000-436x.2022074 |
MO Zijia, GAO Zhipeng, YANG Yang, et al. Efficient distributed model sharing strategy for data privacy protection in Internet of vehicles[J]. Journal on Communications, 2022, 43(4): 83-94.
doi: 10.11959/j.issn.1000-436x.2022074 |
|
[54] |
王鑫, 周泽宝, 余芸, 等. 一种面向电能量数据的联邦学习可靠性激励机制[J]. 计算机科学, 2022, 49(3):31-38.
doi: 10.11896/jsjkx.210700195 |
WANG Xin, ZHOU Zebao, YU Yun, et al. Reliable incentive mechanism for federated learning of electric metering data[J]. Computer Science, 2022, 49(3): 31-38.
doi: 10.11896/jsjkx.210700195 |
|
[55] | 朱建明, 张沁楠, 高胜, 等. 基于区块链的隐私保护可信联邦学习模型[J]. 计算机学报, 2021, 44(12):2464-2484. |
ZHU Jianming, ZHANG Qinnan, GAO Sheng, et al. Privacy preserving and trustworthy federated learning model based on blockchain[J]. Chinese Journal of Computers, 2021, 44(12): 2464-2484. |
[1] | 李菲菲, 徐绘薇, 崔金栋. 基于STIRPAT模型的吉林省石化行业碳排放影响因素研究[J]. 综合智慧能源, 2024, 46(8): 12-19. |
[2] | 李菲菲, 王舒泓, 崔金栋. 全生命周期视角下汽车产业碳排放影响因素的研究——以吉林省为例[J]. 综合智慧能源, 2024, 46(8): 20-27. |
[3] | 赵丹, 朱丽敏, 胡珅, 韩诗琪. 基于模糊实物期权的企业碳资产估值模型构建[J]. 综合智慧能源, 2024, 46(8): 28-35. |
[4] | 邹风华, 朱星阳, 殷俊平, 孟诗语, 江海燕, 陈爱康, 刘澜. “双碳”目标下建筑能源系统发展趋势分析[J]. 综合智慧能源, 2024, 46(8): 36-40. |
[5] | 邓振宇, 汪茹康, 徐钢, 云昆, 王颖. 综合能源系统中热电联产机组故障预警现状[J]. 综合智慧能源, 2024, 46(8): 67-76. |
[6] | 王泽宁, 李文中, 李东辉, 徐泰山, 俞俊. 基于软件定义的新型电力系统分层自治电力平衡模式研究[J]. 综合智慧能源, 2024, 46(7): 1-11. |
[7] | 殷林飞, 蒙雨洁. 基于DenseNet卷积神经网络的短期风电预测方法[J]. 综合智慧能源, 2024, 46(7): 12-20. |
[8] | 孙文杰, 杨之乐, 郭媛君, 姚文娇, 许欢, 周博文. 一种钠离子电池的健康状态估计方法[J]. 综合智慧能源, 2024, 46(7): 74-80. |
[9] | 徐智帆, 李华森, 李文院, 余凯. 基于递归小脑模型神经网络和卡尔曼滤波器的锂电池荷电状态预测[J]. 综合智慧能源, 2024, 46(7): 81-86. |
[10] | 王俊, 田浩, 赵二岗, 舒展, 万子镜. 计及电动汽车共享储能特性的园区柔性资源低碳运行控制方法[J]. 综合智慧能源, 2024, 46(6): 16-26. |
[11] | 李明扬, 窦梦园. 基于强化学习的含电动汽车虚拟电厂优化调度[J]. 综合智慧能源, 2024, 46(6): 27-34. |
[12] | 王林, 孔小民, 周忠玉, 刘建平, 王晓东, 张宁. 云储能模式下的配电网分布式光伏-储能无功优化方法[J]. 综合智慧能源, 2024, 46(6): 44-53. |
[13] | 郁海彬, 卢闻州, 唐亮, 张煜晨, 邹翔宇, 姜玉靓, 刘嘉宝. 考虑风险偏好的多主体虚拟电厂经济调度与收益分配策略[J]. 综合智慧能源, 2024, 46(6): 66-77. |
[14] | 赵长伟, 王慧, 顾志成, 刘绪斌, 朱光明, 葛磊蛟. 分散式风储系统频率和电压调节能力评估关键技术[J]. 综合智慧能源, 2024, 46(6): 78-87. |
[15] | 卓超然, 辛杰, 洪涵卓, 安邦, 李宁. 弱电网条件下并网逆变器阻抗模型的建立方法综述[J]. 综合智慧能源, 2024, 46(6): 88-101. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||