综合智慧能源 ›› 2024, Vol. 46 ›› Issue (6): 54-65.doi: 10.3969/j.issn.2097-0706.2024.06.007
收稿日期:
2024-01-03
修回日期:
2024-02-01
出版日期:
2024-06-25
通讯作者:
*吴杰康(1965),男,教授,博士生导师,博士,从事电力系统运行与控制等方面的研究,wujiekang@163.com。作者简介:
张勋祥(1996),男,硕士生,从事新能源、电力系统优化调度等方面的研究,zhang_xunx2021@163.com
基金资助:
ZHANG Xunxiang(), WU Jiekang*(
), SUN Yehua, PENG Qijian
Received:
2024-01-03
Revised:
2024-02-01
Published:
2024-06-25
Supported by:
摘要:
海上风电具有功率波动强的特点,接入电网时难以达到并网功率变化限制要求。为了平抑海上风电的输出功率波动,提出了一种考虑海上风电波动平抑的混合储能系统(HESS)容量配置方法。首先,利用加权移动平均滤波法得到HESS的输出功率信息指令;然后,利用能量谷优化算法(EVO)对变分模态分解(VMD)的模态分解个数
中图分类号:
张勋祥, 吴杰康, 孙烨桦, 彭其坚. 平抑海上风电波动的混合储能系统容量优化配置[J]. 综合智慧能源, 2024, 46(6): 54-65.
ZHANG Xunxiang, WU Jiekang, SUN Yehua, PENG Qijian. Capacity allocation optimization of hybrid energy storage systems considering fluctuation control on offshore wind power[J]. Integrated Intelligent Energy, 2024, 46(6): 54-65.
表4
HESS容量配置结果
分频点 | 项目 | 方案1 | 方案2 | 方案3 | 方案4 | |||
---|---|---|---|---|---|---|---|---|
锂电池 | 锂电池 | 超级电容 | 锂电池 | 超级电容 | 锂电池 | 超级电容 | ||
K=3 | 功率/MW | 10.96 | 10.07 | 1.74 | 6.93 | 6.12 | 6.51 | 6.09 |
容量/(MW·h) | 0.53 | 0.48 | 0.07 | 0.34 | 0.25 | 0.31 | 0.25 | |
平均日总成本/元 | 31 863 | 24 964 | 21 624 | 20 625 | ||||
K=4 | 功率/MW | 10.96 | 10.17 | 0.79 | 7.07 | 5.35 | 6.73 | 5.35 |
容量/(MW·h) | 0.53 | 0.48 | 0.05 | 0.36 | 0.22 | 0.33 | 0.21 | |
平均日总成本/元 | 31 863 | 24 511 | 21 296 | 20 455 | ||||
K=5 | 功率/MW | 10.96 | 10.32 | 0.55 | 7.21 | 5.18 | 7.95 | 5.16 |
容量/(MW·h) | 0.53 | 0.48 | 0.03 | 0.37 | 0.21 | 0.37 | 0.21 | |
平均日总成本/元 | 31 863 | 24 571 | 21 249 | 22 937 | ||||
K=6 | 功率/MW | 10.96 | 10.45 | 0.26 | 8.70 | 4.69 | 8.65 | 4.65 |
容量/(MW·h) | 0.53 | 0.51 | 0.01 | 0.45 | 0.19 | 0.42 | 0.19 | |
平均日总成本/元 | 31 863 | 24 586 | 24 469 | 24 324 |
[1] | GWEC. Global offshore wind report 2022[R]. Brussels: Global Wind Energy Council, 2023. |
[2] | 刘吉臻, 马利飞, 王庆华, 等. 海上风电支撑我国能源转型发展的思考[J]. 中国工程科学, 2021, 23(1):149-159. |
LIU Jizhen, MA Lifei, WANG Qinghua, et al. Offshore wind power supports China's energy transition[J]. Strategic Study of CAE, 2021, 23(1):149-159. | |
[3] |
孙瑞娟, 梁军, 王克文, 等. 海上风电集电系统研究综述[J]. 电力建设, 2021, 42(6):105-115.
doi: 10.12204/j.issn.1000-7229.2021.06.011 |
SUN Ruijuan, LIANG Jun, WANG Kewen, et al. Overview of offshore wind power collection system[J]. Electric Power Construction, 2021, 42(6):105-115.
doi: 10.12204/j.issn.1000-7229.2021.06.011 |
|
[4] |
颜畅, 黄晟, 屈尹鹏. 面向碳中和的海上风电制氢技术研究综述[J]. 综合智慧能源, 2022, 44(5): 30-40.
doi: 10.3969/j.issn.2097-0706.2022.05.003 |
YAN Chang, HUANG Sheng, QU Yinpeng. Review on hydrogen production technology from offshore wind power to achieve carbon neutrality[J]. Integrated Intelligent Energy, 2022, 44(5): 30-40.
doi: 10.3969/j.issn.2097-0706.2022.05.003 |
|
[5] | AMARO P M, ROMERAL M J L. Intermittent power control in wind turbines integrated into a hybrid energy storage system based on a new state-of-charge management algorithm[J]. Journal of Energy Storage, 2022, 54:105223. |
[6] | ZHAO C F, WAN C, SONG Y H. An adaptive bilevel programming model for nonparametric prediction intervals of wind power generation[J]. IEEE Transactions on Power Systems, 2020, 35(1):424-439. |
[7] | 王宇, 许卫东, 张盼盼. 海上风电场66 kV集电系统研究[J]. 山东电力技术, 2022, 49(4):75-80. |
WANG Yu, XU Weidong, ZHANG Panpan. Study on 66 kV power collection system of offshore wind farm[J]. Shandong Electric Power, 2022, 49(4):75-80. | |
[8] | 吴昊, 于景龙, 杨政厚, 等. 风电场无功与电压控制技术研究综述[J]. 热力发电, 2023, 52(3):26-38. |
WU Hao, YU Jinglong, YANG Zhenghou, et al. Review of reactive power and voltage control technologies in wind farm[J]. Thermal Power Generation, 2023, 52(3):26-38. | |
[9] | 尹昱程, 董新胜, 何山. 基于同步调相机和 SVG 的无功电压优化策略研究[J]. 现代电子技术, 2023, 46(1):150-155. |
YIN Yucheng, DONG Xinsheng, HE Shan. Research on reactive power voltage optimization strategy based on synchronous condenser and SVG[J]. Modern Electronics Technology, 2023, 46(1):150-155. | |
[10] | 茆美琴, 刘洋, 刘斌. 小型定桨距风力机卸荷电阻动态无级调节主动失速控制研究[J]. 太阳能学报, 2016, 37(5):1085-1092. |
MAO Meiqin, LIU Yang, LIU Bin. Research on damping resistance dynamic and stepless regulation for small-scale pitch-fixed wind turbine active stall control[J]. Acta Energiae Solaris Sinica, 2016, 37(5):1085-1092. | |
[11] | 廖勇, 何金波, 姚骏. 基于变桨距和转矩动态控制的直驱永磁同步风力发电机功率平滑控制[J]. 中国电机工程学报, 2009, 29(18):71-77. |
LIAO Yong, HE Jinbo, YAO Jun. Power smoothing control strategy of direct-driven permanent magnet synchronous generator for wind turbine with pitch angle control and torque dynamic control[J]. Proceedings of the CSEE, 2009, 29(18):71-77. | |
[12] | 刘颖明, 王维, 王晓东, 等. 结合风功率预测及储能能量状态的模糊控制策略平滑风电出力[J]. 电网技术, 2019, 43(7):2535-2543. |
LIU Yingming, WANG Wei, WANG Xiaodong, et al. A fuzzy control strategy combined with wind power prediction and energy storage SOE for smoothing wind power output[J]. Power System Technology, 2019, 43(7):2535-2543. | |
[13] | 林莉, 林雨露, 谭惠丹, 等. 计及SOC自恢复的混合储能平抑风电功率波动控制[J/OL]. 电工技术学报, 2023:1-14(2023-03-21)[2023-12-18]. https://doi.org/10.19595/j.cnki.1000-6753.tces.221976. |
LIN Li, LIN Yulu, TAN Huidan, et al. Hybrid energy storage control with SOC self-recovery to smooth out wind power fluctuations[J/OL]. Transactions of China Electrotechnical Society, 2023:1-14(2023-03-21)[2023-12-18]. https://doi.org/10.19595/j.cnki.1000-6753.tces.221976. | |
[14] |
马彦宏, 吕清泉, 张珍珍, 等. 考虑储能系统SOC的双卡尔曼滤波风电功率波动平抑策略[J]. 综合智慧能源, 2023, 45(2): 61-68.
doi: 10.3969/j.issn.2097-0706.2023.02.008 |
MA Yanhong, LYU Qingquan, ZHANG Zhenzhen, et al. Wind power fluctuation mitigation strategy based on double Kalman filter considering the SOC of the energy storage system[J]. Integrated Intelligent Energy, 2023, 45(2): 61-68.
doi: 10.3969/j.issn.2097-0706.2023.02.008 |
|
[15] | 李建林, 袁晓冬, 郁正纲, 等. 利用储能系统提升电网电能质量研究综述[J]. 电力系统自动化, 2019, 43(8):15-25. |
LI Jianlin, YUAN Xiaodong, YU Zhenggang. et al. Comments on power quality enhancement research for power grid by energy storage system[J]. Automation of Electric Power Systems, 2019, 43(8):15-25. | |
[16] |
贾东卫, 任永峰, 李莉美, 等. 基于集合经验模态分解的微电网混合储能优化配置[J]. 太阳能学报, 2023, 44(2):239-246.
doi: 10.19912/j.0254-0096.tynxb.2021-1070 |
JIA Dongwei, REN Yongfeng, LI Limei, et al. Research on optimization of hybrid energy storage capacity using ensemble empirical mode decomposition and fuzzy control[J]. Acta Energiae Solaris Sinica, 2023, 44(2):239-246.
doi: 10.19912/j.0254-0096.tynxb.2021-1070 |
|
[17] |
乔力晖, 李明澈, 张睿, 等. 直流微网蓄电池-SMES混合储能系统容量配置方法[J]. 综合智慧能源, 2023, 45(9): 59-64.
doi: 10.3969/j.issn.2097-0706.2023.09.008 |
QIAO Lihui, LI Mingche, ZHANG Rui, et al. Capacity configuration method for a battery-SMES hybrid energy storage system in a DC microgrid[J]. Integrated Intelligent Energy, 2023, 45(9): 59-64.
doi: 10.3969/j.issn.2097-0706.2023.09.008 |
|
[18] | 马兰, 谢丽蓉, 叶林, 等. 基于混合储能双层规划模型的风电波动平抑策略[J]. 电网技术, 2022, 46(3):1016-1029. |
MA Lan, XIE Lirong, YE Lin, et al. Wind power fluctuation suppression strategy based on hybrid energy storage bi-level programming model[J]. Power System Technology, 2022, 46(3):1016-1029. | |
[19] | 李相俊, 赵珊珊, 惠东. 面向新型电力系统的大型储能电站关键技术发展趋势分析与展望[J]. 供用电, 2022, 39(7):2-8,24. |
LI Xiangjun, ZHAO Shanshan, HUI Dong. Development trend analysis and prospect of key technologies of large energy storage station in new type power system[J]. Distribution & Utilization, 2022, 39(7):2-8,24. | |
[20] | GUO T T, LIU Y B, ZHAO J B, et al. A dynamic wavelet-based robust wind power smoothing approach using hybrid energy storage system[J]. International Journal of Electrical Power & Energy Systems, 2020, 116:105579. |
[21] | 孙玉树, 李星, 唐西胜, 等. 应用于微网的多类型储能多级控制策略[J]. 高电压技术, 2017, 43(1):181-188. |
SUN Yushu, LI Xing, TANG Xisheng, et al. Multi-level control strategy of multi-type energy storages for microgrid[J]. High Voltage Engineering, 2017, 43(1):181-188. | |
[22] |
齐先军, 郑夕炜, 王晓蓉, 等. 基于时频分析的改进小波包风电功率波动平抑方法[J]. 太阳能学报, 2022, 43(7):302-309.
doi: 10.19912/j.0254-0096.tynxb.2020-1238 |
QI Xianjun, ZHENG Xiwei, WANG Xiaorong, et al. Improved wavelet packet method of smoothing wind power fluctuations based on time-frequency analysis[J]. Acta Energiae Solaris Sinica, 2022, 43(7):302-309.
doi: 10.19912/j.0254-0096.tynxb.2020-1238 |
|
[23] | 蒋新科, 刘春, 张雪松, 等. 基于双储能的风电功率波动平抑策略研究[J/OL]. 电测与仪表, 2023:1-8(2023-03-23)[2023-12-18]. http://kns.cnki.net/kcms/detail/23.1202.TH.20230322.1512.006.html. |
JIANG Xinke, LIU Chun, ZHANG Xuesong, et al. Study on strategy for stabilizing wind power fluctuations based on dual energy storage[J/OL]. Electrical Measurement & Instrumentation, 2023:1-8(2023-03-23)[2023-12-18]. http://kns.cnki.net/kcms/detail/23.1202.TH.20230322.1512.006.html. | |
[24] | 焦东东, 陈洁, 方圆, 等. 基于变分模态分解下利用混合储能平抑风电出力波动的控制策略[J]. 电测与仪表, 2021, 58(5):14-19,30. |
JIAO Dongdong, CHEN Jie, FANG Yuan, et al. Control strategy of hybrid energy storage for suppressing fluctuation of wind power output based on variational mode decomposition[J]. Electrical Measurement & Instrumentation, 2021, 58(5):14-19,30. | |
[25] | 刘军, 甘乾煜, 张泽秋, 等. 考虑储能电池运行寿命的风电功率波动平抑方法研究[J]. 电网技术, 2023, 47(5):2098-2108. |
LIU Jun, GAN Qianyu, ZHANG Zeqiu, et al. Research on wind power fluctuation suppression method considering the operating life of energy storage battery[J]. Power System Technology, 2023, 47(5):2098-2108. | |
[26] | 李亚楠, 王倩, 宋文峰, 等. 混合储能系统平滑风电出力的变分模态分解-模糊控制策略[J]. 电力系统保护与控制, 2019, 47(7): 58-65. |
LI Yanan, WANG Qian, SONG Wenfeng, et al. Variational mode decomposition and fuzzy control strategy of hybrid energy storage for smoothing wind power outputs[J]. Power System Protection and Control, 2019, 47(7): 58-65. | |
[27] | ZHAO P, WANG J F, DAI Y P. Capacity allocation of a hybrid energy storage system for power system peak shaving at high wind power penetration level[J]. Renewable Energy, 2015, 75:541-549. |
[28] | 徐衍会, 徐宜佳. 平抑风电波动的混合储能容量配置及控制策略[J]. 中国电力, 2022, 55(6):186-193. |
XU Yanhui, XU Yijia. Capacity configuration and control strategy of hybrid energy storage to smooth wind power fluctuations[J]. Electric Power, 2022, 55(6):186-193. | |
[29] | 风电场接入电力系统技术规定第1部分:陆上风电:GB/T 19963—2021[S]. |
[30] | 陈裕, 张怡, 谢俊峰. 自适应滑动平均与小波包分解平抑风电波动[J]. 控制工程 2021, 28(7):1281-1288. |
CHEN Yu, ZHANG Yi, XIE Junfeng. Adaptive moving average and wavelet packet decomposition to smooth wind power fluctuation[J]. Control Engineering of China, 2021, 28(7):1281-1288. | |
[31] | AZIZI M, AICKELIN U, KHORSHIDI H A, et al. Energy valley optimizer:A novel metaheuristic algorithm for global and engineering optimization[J]. Scientific Reports, 2023, 13:226. |
[32] | 陈晓华, 王志平, 吴杰康, 等. 基于VMD和IAO-SVM的电压暂降源识别方法[J]. 广东电力, 2023, 36(1):59-67. |
CHEN Xiaohua, WANG Zhiping, WU Jiekang, et al. Voltage sag source identification method based on VMD and IAO-SVM[J]. Guangdong Electric Power, 2023, 36(1):59-67. |
[1] | 江善和, 李伟, 徐小艳, 王德凯. 基于变分模态分解改进生成对抗网络的短期风电功率预测[J]. 综合智慧能源, 2024, 46(2): 28-35. |
[2] | 乔力晖, 李明澈, 张睿, 方宗杰. 直流微网蓄电池-SMES混合储能系统容量配置方法[J]. 综合智慧能源, 2023, 45(9): 59-64. |
[3] | 李梓丘, 乔颖, 鲁宗相. 计及效率与寿命的海上风电-多堆氢能系统运行优化[J]. 综合智慧能源, 2022, 44(5): 69-77. |
[4] | 杜欣烨, 王建喜, 孙永辉, 何逸, 吴鹏鹏, 周伟. 计及海水淡化制氢的微电网混合储能优化规划[J]. 综合智慧能源, 2022, 44(5): 49-55. |
[5] | 王峰, 逯鹏, 张清涛, 赵辉, 王怀明, 茹洋洋. 海上风电制氢发展趋势及前景展望[J]. 综合智慧能源, 2022, 44(5): 41-48. |
[6] | 颜畅, 黄晟, 屈尹鹏. 面向碳中和的海上风电制氢技术研究综述[J]. 综合智慧能源, 2022, 44(5): 30-40. |
[7] | 周成伟, 李鹏, 俞斌, 俞天杨, 孟伟. 风光储微电网储能系统容量优化配置[J]. 综合智慧能源, 2022, 44(12): 56-61. |
[8] | 崔双双, 孙单勋. 分工况下风电机组各变量相关性研究[J]. 综合智慧能源, 2022, 44(12): 49-55. |
[9] | 翟广松, 王鹏, 梁鹏勋, 谢智锋, 殷豪. 基于纵横交叉算法-门控循环单元的日前电价预测模型[J]. 综合智慧能源, 2022, 44(11): 36-42. |
[10] | 余思贤, 周允康, 刘雷伟, 何婷. 海上风电-水下压缩空气储能系统建模及经济性分析[J]. 综合智慧能源, 2022, 44(10): 71-82. |
[11] | 王峰,芮守娟,王小合,王怀明,王義维,董习斌,王伟,余浩. 66 kV 海上风电交流集电方案的研究与发展前景[J]. 华电技术, 2020, 42(5): 61-65. |
[12] | 王晗雯,鲁胜,周照宇. 光伏-混合储能微电网协调控制及经济性分析[J]. 华电技术, 2020, 42(4): 31-36. |
[13] | 胡婷1,王为林2. 高强度气囊在运输风电塔筒钢基桩系统中的设计[J]. 华电技术, 2019, 41(10): 44-47. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||